These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16774961)

  • 1. Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task.
    Chudasama Y; Kralik JD; Murray EA
    Cereb Cortex; 2007 May; 17(5):1154-9. PubMed ID: 16774961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency.
    Izquierdo A; Suda RK; Murray EA
    J Neurosci; 2004 Aug; 24(34):7540-8. PubMed ID: 15329401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior.
    Rudebeck PH; Murray EA
    J Neurosci; 2011 Jul; 31(29):10569-78. PubMed ID: 21775601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.
    Izquierdo A; Murray EA
    J Neurophysiol; 2004 May; 91(5):2023-39. PubMed ID: 14711973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhesus macaques (Macaca mulatta) spontaneously generalize to novel quantities in a reverse-reward contingency task.
    Kralik JD
    J Comp Psychol; 2012 Aug; 126(3):255-62. PubMed ID: 22122399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards.
    Man MS; Clarke HF; Roberts AC
    Cereb Cortex; 2009 Apr; 19(4):899-906. PubMed ID: 18689858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys.
    Izquierdo A; Murray EA
    Eur J Neurosci; 2005 Nov; 22(9):2341-6. PubMed ID: 16262672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of amygdala, orbital prefrontal cortex, and prelimbic cortex lesions on goal-directed behavior in rhesus macaques.
    Rhodes SE; Murray EA
    J Neurosci; 2013 Feb; 33(8):3380-9. PubMed ID: 23426666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.
    Baxter MG; Gaffan D; Kyriazis DA; Mitchell AS
    J Neurosci; 2007 Oct; 27(42):11327-33. PubMed ID: 17942727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys.
    Izquierdo A; Suda RK; Murray EA
    J Neurosci; 2005 Sep; 25(37):8534-42. PubMed ID: 16162935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task.
    Wallis JD; Dias R; Robbins TW; Roberts AC
    Eur J Neurosci; 2001 May; 13(9):1797-808. PubMed ID: 11359531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset.
    Dias R; Robbins TW; Roberts AC
    Behav Neurosci; 1996 Oct; 110(5):872-86. PubMed ID: 8918991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates.
    Machado CJ; Bachevalier J
    Eur J Neurosci; 2007 May; 25(9):2885-904. PubMed ID: 17561849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys.
    Baxter MG; Gaffan D; Kyriazis DA; Mitchell AS
    Eur J Neurosci; 2009 May; 29(10):2049-59. PubMed ID: 19453635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of prefrontal cortex in object-in-place learning in monkeys.
    Browning PG; Easton A; Buckley MJ; Gaffan D
    Eur J Neurosci; 2005 Dec; 22(12):3281-91. PubMed ID: 16367793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the great apes (Pan troglodytes, Pongo pygmaeus, Pan paniscus, Gorilla gorilla) perform on the reversed reward contingency task II: transfer to new quantities, long-term retention, and the impact of quantity ratios.
    Uher J; Call J
    J Comp Psychol; 2008 May; 122(2):204-12. PubMed ID: 18489236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waiting by mistake: symbolic representation of rewards modulates intertemporal choice in capuchin monkeys, preschool children and adult humans.
    Addessi E; Bellagamba F; Delfino A; De Petrillo F; Focaroli V; Macchitella L; Maggiorelli V; Pace B; Pecora G; Rossi S; Sbaffi A; Tasselli MI; Paglieri F
    Cognition; 2014 Mar; 130(3):428-41. PubMed ID: 24387915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory control and response selection in problem solving: how cotton-top tamarins (Saguinus oedipus) overcome a bias for selecting the larger quantity of food.
    Kralik JD
    J Comp Psychol; 2005 Feb; 119(1):78-89. PubMed ID: 15740432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative reward preference in primate orbitofrontal cortex.
    Tremblay L; Schultz W
    Nature; 1999 Apr; 398(6729):704-8. PubMed ID: 10227292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.