These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1677609)

  • 1. Dynamic changes in extracellular fluid ascorbic acid monitored by in vivo electrochemistry.
    Ghasemzadeh B; Cammack J; Adams RN
    Brain Res; 1991 Apr; 547(1):162-6. PubMed ID: 1677609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pharmacological profile of glutamate-evoked ascorbic acid efflux measured by in vivo electrochemistry.
    Cammack J; Ghasemzadeh B; Adams RN
    Brain Res; 1991 Nov; 565(1):17-22. PubMed ID: 1685348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ageing on extracellular ascorbate concentration in rat brain.
    Svensson L; Wu C; Hulthe P; Johannessen K; Engel JA
    Brain Res; 1993 Apr; 609(1-2):36-40. PubMed ID: 8508318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical monitoring of brain ascorbic acid changes associated with hypoxia, spreading depression, and seizure activity.
    Cammack J; Ghasemzadeh B; Adams RN
    Neurochem Res; 1992 Jan; 17(1):23-7. PubMed ID: 1347161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain.
    Zhang M; Liu K; Xiang L; Lin Y; Su L; Mao L
    Anal Chem; 2007 Sep; 79(17):6559-65. PubMed ID: 17676820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting in vivo electrochemistry: electrode-tissue interaction and the ascorbate amplification effect.
    Echizen H; Freed CR
    Life Sci; 1986 Jul; 39(1):77-89. PubMed ID: 2425210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors.
    Kulagina NV; Shankar L; Michael AC
    Anal Chem; 1999 Nov; 71(22):5093-100. PubMed ID: 10575963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double-cycle high-speed voltammetric technique allowing direct measurement of irreversibly oxidised species: characterisation and application to the temporal measurement of ascorbate in the rat central nervous system.
    Stamford JA; Kruk ZL; Millar J
    J Neurosci Methods; 1984 Feb; 10(2):107-18. PubMed ID: 6748733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo voltammetric recording with nafion-coated carbon paste electrodes: additional evidence that ascorbic acid release is monitored.
    Mueller K
    Pharmacol Biochem Behav; 1986 Aug; 25(2):325-8. PubMed ID: 3763657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological evidence, using in vivo dialysis, that substances additional to ascorbic acid, uric acid and homovanillic acid contribute to the voltammetric signals obtained in unrestrained rats from chronically implanted carbon paste electrodes.
    Joseph MH; Young AM
    J Neurosci Methods; 1991 Feb; 36(2-3):209-18. PubMed ID: 2062116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic regional changes of extracellular ascorbic acid during global cerebral ischemia: studied with in vivo microdialysis coupled with on-line electrochemical detection.
    Liu K; Lin Y; Yu P; Mao L
    Brain Res; 2009 Feb; 1253():161-8. PubMed ID: 19100721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltammetrically monitored brain ascorbate as an index of excitatory amino acid release in the unrestrained rat.
    O'Neill RD; Fillenz M; Sundstrom L; Rawlins JN
    Neurosci Lett; 1984 Dec; 52(3):227-33. PubMed ID: 6521967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronoamperometry in brain slices: quantitative evaluations of in vivo electrochemistry.
    Schenk JO; Miller E; Rice ME; Adams RN
    Brain Res; 1983 Oct; 277(1):1-8. PubMed ID: 6357350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia.
    Lin Y; Yu P; Hao J; Wang Y; Ohsaka T; Mao L
    Anal Chem; 2014 Apr; 86(8):3895-901. PubMed ID: 24621127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal interaction among dopamine, glutamate and ascorbate.
    Morales I; Fuentes A; Ballaz S; Obeso JA; Rodriguez M
    Neuropharmacology; 2012 Dec; 63(8):1308-14. PubMed ID: 22959966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of ascorbate and nitric oxide dynamics in vivo in the rat hippocampus upon glutamatergic neuronal stimulation: a novel functional interplay.
    Ferreira NR; Lourenço CF; Barbosa RM; Laranjinha J
    Brain Res Bull; 2015 May; 114():13-9. PubMed ID: 25783673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection.
    Liu K; Lin Y; Xiang L; Yu P; Su L; Mao L
    Neurochem Int; 2008 May; 52(6):1247-55. PubMed ID: 18295377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-differential voltammetry with carbon fiber electrodes for in vivo determination of monoamine metabolites and ascorbic acid in rat corpus striatum.
    Cao YP; Liu GQ; Jia XM; Peng TZ
    Zhongguo Yao Li Xue Bao; 1992 May; 13(3):259-62. PubMed ID: 1279939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid changes in striatal ascorbate in response to tail-pinch monitored by constant potential voltammetry.
    Boutelle MG; Svensson L; Fillenz M
    Neuroscience; 1989; 30(1):11-7. PubMed ID: 2747907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of glutamate on the dopamine content and metabolism in the nigrostriatal system of rats differing by their learning capacities].
    Karpova IV; Iakimovskiĭ AF
    Fiziol Zh Im I M Sechenova; 1993 Feb; 79(2):43-51. PubMed ID: 8101122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.