These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 16776291)
1. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae. Pavet V; Quintero C; Cecchini NM; Rosa AL; Alvarez ME Mol Plant Microbe Interact; 2006 Jun; 19(6):577-87. PubMed ID: 16776291 [TBL] [Abstract][Full Text] [Related]
2. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae. Zhao Y; He SY; Sundin GW Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298 [TBL] [Abstract][Full Text] [Related]
3. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Laurie-Berry N; Joardar V; Street IH; Kunkel BN Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791 [TBL] [Abstract][Full Text] [Related]
7. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
8. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Freeman BC; Beattie GA Mol Plant Microbe Interact; 2009 Jul; 22(7):857-67. PubMed ID: 19522568 [TBL] [Abstract][Full Text] [Related]
9. High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Fan J; Crooks C; Lamb C Plant J; 2008 Jan; 53(2):393-9. PubMed ID: 17971037 [TBL] [Abstract][Full Text] [Related]
10. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. Tessadori F; Chupeau MC; Chupeau Y; Knip M; Germann S; van Driel R; Fransz P; Gaudin V J Cell Sci; 2007 Apr; 120(Pt 7):1200-8. PubMed ID: 17376962 [TBL] [Abstract][Full Text] [Related]
11. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E; Rostás M; Zeier J Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [TBL] [Abstract][Full Text] [Related]
12. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W; Zhang S; He SY Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704 [TBL] [Abstract][Full Text] [Related]
13. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. Ryu CM; Murphy JF; Reddy MS; Kloepper JW J Microbiol Biotechnol; 2007 Feb; 17(2):280-6. PubMed ID: 18051759 [TBL] [Abstract][Full Text] [Related]
14. Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. Peer M; Stegmann M; Mueller MJ; Waller F FEBS Lett; 2010 Sep; 584(18):4053-6. PubMed ID: 20732322 [TBL] [Abstract][Full Text] [Related]
15. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. Wang L; Mitra RM; Hasselmann KD; Sato M; Lenarz-Wyatt L; Cohen JD; Katagiri F; Glazebrook J Mol Plant Microbe Interact; 2008 Nov; 21(11):1408-20. PubMed ID: 18842091 [TBL] [Abstract][Full Text] [Related]
16. The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst. Simon C; Langlois-Meurinne M; Bellvert F; Garmier M; Didierlaurent L; Massoud K; Chaouch S; Marie A; Bodo B; Kauffmann S; Noctor G; Saindrenan P J Exp Bot; 2010 Jul; 61(12):3355-70. PubMed ID: 20530195 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Vencato M; Tian F; Alfano JR; Buell CR; Cartinhour S; DeClerck GA; Guttman DS; Stavrinides J; Joardar V; Lindeberg M; Bronstein PA; Mansfield JW; Myers CR; Collmer A; Schneider DJ Mol Plant Microbe Interact; 2006 Nov; 19(11):1193-206. PubMed ID: 17073302 [TBL] [Abstract][Full Text] [Related]
18. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Jagadeeswaran G; Raina S; Acharya BR; Maqbool SB; Mosher SL; Appel HM; Schultz JC; Klessig DF; Raina R Plant J; 2007 Jul; 51(2):234-46. PubMed ID: 17521413 [TBL] [Abstract][Full Text] [Related]
19. Measuring cell-wall-based defenses and their effect on bacterial growth in Arabidopsis. Kim MG; Mackey D Methods Mol Biol; 2008; 415():443-52. PubMed ID: 18370170 [TBL] [Abstract][Full Text] [Related]
20. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Kim KC; Fan B; Chen Z Plant Physiol; 2006 Nov; 142(3):1180-92. PubMed ID: 16963526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]