BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16776832)

  • 41. Inducible gene inactivation in neurons of the adult mouse forebrain.
    Erdmann G; Schütz G; Berger S
    BMC Neurosci; 2007 Aug; 8():63. PubMed ID: 17683525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control of memory formation through regulated expression of a CaMKII transgene.
    Mayford M; Bach ME; Huang YY; Wang L; Hawkins RD; Kandel ER
    Science; 1996 Dec; 274(5293):1678-83. PubMed ID: 8939850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Agrin signaling in cortical neurons is mediated by a tyrosine kinase-dependent increase in intracellular Ca2+ that engages both CaMKII and MAPK signal pathways.
    Hilgenberg LG; Smith MA
    J Neurobiol; 2004 Dec; 61(3):289-300. PubMed ID: 15389602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation.
    Krapivinsky G; Medina I; Krapivinsky L; Gapon S; Clapham DE
    Neuron; 2004 Aug; 43(4):563-74. PubMed ID: 15312654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes.
    Guo T; Zhang T; Mestril R; Bers DM
    Circ Res; 2006 Aug; 99(4):398-406. PubMed ID: 16840718
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CaMKII Phosphorylation in Primary Somatosensory Cortical Neurons is Involved in the Inhibition of Remifentanil-induced Hyperalgesia by Lidocaine in Male Sprague-Dawley Rats.
    Cui W; Wang S; Han R; Wang Q; Li J
    J Neurosurg Anesthesiol; 2016 Jan; 28(1):44-50. PubMed ID: 25811361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Participation of CaMKII in neuronal plasticity and memory formation.
    Cammarota M; Bevilaqua LR; Viola H; Kerr DS; Reichmann B; Teixeira V; Bulla M; Izquierdo I; Medina JH
    Cell Mol Neurobiol; 2002 Jun; 22(3):259-67. PubMed ID: 12469869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Study on the regulation of synaptic function by Ca2+/calmodulin-dependent protein kinase II].
    Fujishiro Donai H
    Yakugaku Zasshi; 2006 May; 126(5):337-42. PubMed ID: 16679741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex.
    Glazewski S; Chen CM; Silva A; Fox K
    Science; 1996 Apr; 272(5260):421-3. PubMed ID: 8602534
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia.
    Chen Y; Yang C; Wang ZJ
    J Neurosci; 2010 Jan; 30(1):38-46. PubMed ID: 20053885
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of immortalized murine forebrain cell lines expressing an alpha isoform of Ca2+/calmodulin-dependent protein kinase II.
    Fujii M; Nomura T; Kumatoriya K; Yoshimura Y; Yamauchi T
    Biol Pharm Bull; 1998 Mar; 21(3):210-3. PubMed ID: 9556146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of acute nociceptive responses by the NMDA receptor GluRepsilon2 subunit.
    Wainai T; Takeuchi T; Seo N; Mishina M
    Neuroreport; 2001 Oct; 12(15):3169-72. PubMed ID: 11711849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cholinergic neurons mediate CaMKII-dependent enhancement of courtship suppression.
    Mehren JE; Griffith LC
    Learn Mem; 2006; 13(6):686-9. PubMed ID: 17101876
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ACC Plasticity Maintains Masseter Hyperalgesia Caused by Occlusal Interference.
    Xu XX; Cao Y; Mo SY; Liu Y; Xie QF
    J Dent Res; 2019 May; 98(5):589-596. PubMed ID: 30786804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic enhancement of neuropathic and inflammatory pain by forebrain upregulation of CREB-mediated transcription.
    Descalzi G; Fukushima H; Suzuki A; Kida S; Zhuo M
    Mol Pain; 2012 Dec; 8():90. PubMed ID: 23272977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Molecular mechanism of the regulation of neuronal function based on Ca2+/calmodulin-dependent protein kinase II].
    Yamauchi T
    Seikagaku; 2006 Sep; 78(9):840-52. PubMed ID: 17052020
    [No Abstract]   [Full Text] [Related]  

  • 58. Central plasticity in pathological pain.
    Zhuo M
    Novartis Found Symp; 2004; 261():132-45; discussion 145-54. PubMed ID: 15469048
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic plasticity: the subcellular location of CaMKII controls plasticity.
    Fox K
    Curr Biol; 2003 Feb; 13(4):R143-5. PubMed ID: 12593817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review.
    Ataei N; Sabzghabaee AM; Movahedian A
    Int J Prev Med; 2015; 6():88. PubMed ID: 26445635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.