BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16777057)

  • 21. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
    Brown RE; Anderson WH; Kulkarni VS
    Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Charged membrane surfaces impede the protein-mediated transfer of glycosphingolipids between phospholipid bilayers.
    Mattjus P; Pike HM; Molotkovsky JG; Brown RE
    Biochemistry; 2000 Feb; 39(5):1067-75. PubMed ID: 10653652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphatidylcholine vesicle-mediated decomposition of hydrogen peroxide.
    Yoshimoto M; Miyazaki Y; Umemoto A; Walde P; Kuboi R; Nakao K
    Langmuir; 2007 Aug; 23(18):9416-22. PubMed ID: 17655340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycolipid transfer protein from bovine brain.
    Wong M; Brown RE; Barenholz Y; Thompson TE
    Biochemistry; 1984 Dec; 23(26):6498-505. PubMed ID: 6529565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sphingomyelin analogs with branched N-acyl chains: the position of branching dramatically affects acyl chain order and sterol interactions in bilayer membranes.
    Jaikishan S; Björkbom A; Slotte JP
    Biochim Biophys Acta; 2010 Oct; 1798(10):1987-94. PubMed ID: 20637720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique.
    Ohvo-Rekilä H; Mattjus P
    Biochim Biophys Acta; 2011 Jan; 1808(1):47-54. PubMed ID: 20804726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycolipid transfer protein expression is affected by glycosphingolipid synthesis.
    Kjellberg MA; Mattjus P
    PLoS One; 2013; 8(7):e70283. PubMed ID: 23894633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movement of cholesterol between vesicles prepared with different phospholipids or sizes.
    Fugler L; Clejan S; Bittman R
    J Biol Chem; 1985 Apr; 260(7):4098-102. PubMed ID: 3980469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-cholesteryl sphingomyelin-A synthetic sphingolipid with unique membrane properties.
    Sergelius C; Yamaguchi S; Yamamoto T; Slotte JP; Katsumura S
    Biochim Biophys Acta; 2011 Apr; 1808(4):1054-62. PubMed ID: 21194522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional evaluation of tryptophans in glycolipid binding and membrane interaction by HET-C2, a fungal glycolipid transfer protein.
    Kenoth R; Zou X; Simanshu DK; Pike HM; Malinina L; Patel DJ; Brown RE; Kamlekar RK
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1069-1076. PubMed ID: 29305831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rat liver glycolipid transfer protein. A protein which facilitates the translocation of mono- and dihexosylceramides from donor to acceptor liposomes.
    Yamada K; Sasaki T
    J Biochem; 1982 Aug; 92(2):457-64. PubMed ID: 7130151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric synthesis of water-soluble analogues of galactosylceramide, an HIV-1 receptor: new tools to study virus-glycolipid interactions.
    Villard R; Hammache D; Delapierre G; Fotiadu F; Buono G; Fantini J
    Chembiochem; 2002 Jun; 3(6):517-25. PubMed ID: 12325007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycolipid acquisition by human glycolipid transfer protein dramatically alters intrinsic tryptophan fluorescence: insights into glycolipid binding affinity.
    Zhai X; Malakhova ML; Pike HM; Benson LM; Bergen HR; Sugár IP; Malinina L; Patel DJ; Brown RE
    J Biol Chem; 2009 May; 284(20):13620-13628. PubMed ID: 19270338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of galactosylceramide on the dynamics of cholesterol-rich lipid membranes.
    Hall A; Róg T; Vattulainen I
    J Phys Chem B; 2011 Dec; 115(49):14424-34. PubMed ID: 22032265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fluorimetric determination of the activity of glycolipid transfer protein and some properties of the protein purified from pig brain.
    Abe A; Yamada K; Sakagami T; Sasaki T
    Biochim Biophys Acta; 1984 Dec; 778(2):239-44. PubMed ID: 6498190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and macromolecular specificity of human plasma phospholipid transfer protein.
    Rao R; Albers JJ; Wolfbauer G; Pownall HJ
    Biochemistry; 1997 Mar; 36(12):3645-53. PubMed ID: 9132017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholesteryl phosphocholine--a study on its interactions with ceramides and other membrane lipids.
    Lönnfors M; Långvik O; Björkbom A; Slotte JP
    Langmuir; 2013 Feb; 29(7):2319-29. PubMed ID: 23356741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of cholesterol and saturated sphingolipids on acyl chain order in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers--a comparative study with phase-selective fluorophores.
    Engberg O; Nurmi H; Nyholm TK; Slotte JP
    Langmuir; 2015 Apr; 31(14):4255-63. PubMed ID: 25806833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of hydrophobic mismatch and interdigitation on sterol/sphingomyelin interaction in ternary bilayer membranes.
    Jaikishan S; Slotte JP
    Biochim Biophys Acta; 2011 Jul; 1808(7):1940-5. PubMed ID: 21515240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.