BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16777075)

  • 1. It is AMPA receptor, not kainate receptor, that contributes to the NBQX-induced antinociception in the spinal cord of rats.
    Kong LL; Yu LC
    Brain Res; 2006 Jul; 1100(1):73-7. PubMed ID: 16777075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma.
    Wrathall JR; Teng YD; Marriott R
    Exp Neurol; 1997 Jun; 145(2 Pt 1):565-73. PubMed ID: 9217092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of mu- and delta-opioid receptors in the antinociceptive effects induced by AMPA receptor antagonist in the spinal cord of rats.
    Kong LL; Yu LC
    Neurosci Lett; 2006 Jul; 402(1-2):180-3. PubMed ID: 16644121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some behavioral effects of CNQX AND NBQX, AMPA receptor antagonists.
    Maj J; Rogóz Z; Skuza G; Jaros T
    Pol J Pharmacol; 1995; 47(4):269-77. PubMed ID: 8616504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors mediate development, but not maintenance, of secondary allodynia evoked by first-degree burn in the rat.
    Jones TL; Sorkin LS
    J Pharmacol Exp Ther; 2004 Jul; 310(1):223-9. PubMed ID: 15007101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of ionotropic glutamate receptors in low frequency electroacupuncture analgesia in rats.
    Choi BT; Lee JH; Wan Y; Han JS
    Neurosci Lett; 2005 Apr; 377(3):185-8. PubMed ID: 15755523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inimitable kynurenic acid: the roles of different ionotropic receptors in the action of kynurenic acid at a spinal level.
    Tuboly G; Tar L; Bohar Z; Safrany-Fark A; Petrovszki Z; Kekesi G; Vecsei L; Pardutz A; Horvath G
    Brain Res Bull; 2015 Mar; 112():52-60. PubMed ID: 25677204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice.
    Gadotti VM; Tibola D; Paszcuk AF; Rodrigues AL; Calixto JB; Santos AR
    Brain Res; 2006 Jun; 1093(1):116-22. PubMed ID: 16765330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BMAA selectively injures motor neurons via AMPA/kainate receptor activation.
    Rao SD; Banack SA; Cox PA; Weiss JH
    Exp Neurol; 2006 Sep; 201(1):244-52. PubMed ID: 16764863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of glutamate receptors in the development and maintenance of bladder overactivity after cerebral infarction in the rat.
    Yokoyama O; Mizuno H; Komatsu K; Akino H; Tanase K; Namiki M
    J Urol; 2004 Apr; 171(4):1709-14. PubMed ID: 15017271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury.
    Abraham KE; McGinty JF; Brewer KL
    Neuroscience; 2001; 104(3):863-74. PubMed ID: 11440816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats.
    Gwak YS; Kang J; Leem JW; Hulsebosch CE
    J Neurosci Res; 2007 Aug; 85(11):2352-9. PubMed ID: 17549753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPA- and kainate-receptors differentially mediate excitatory amino acid-induced dopamine and acetylcholine release from rat striatal slices.
    Jin S
    Neuropharmacology; 1997; 36(11-12):1503-10. PubMed ID: 9517420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrospinal fluid from amyotrophic lateral sclerosis patients preferentially elevates intracellular calcium and toxicity in motor neurons via AMPA/kainate receptor.
    Sen I; Nalini A; Joshi NB; Joshi PG
    J Neurol Sci; 2005 Aug; 235(1-2):45-54. PubMed ID: 15936037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of intrathecal NMDA and AMPA receptors agonists or antagonists on antinociception of propofol.
    Xu AJ; Duan SM; Zeng YM
    Acta Pharmacol Sin; 2004 Jan; 25(1):9-14. PubMed ID: 14704116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticonvulsant, anxiolytic and discriminative effects of the AMPA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX).
    Swedberg MD; Jacobsen P; Honoré T
    J Pharmacol Exp Ther; 1995 Sep; 274(3):1113-21. PubMed ID: 7562477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal mechanisms of antinociceptive effect caused by oral administration of bis-selenide in mice.
    Jesse CR; Savegnago L; Nogueira CW
    Brain Res; 2008 Sep; 1231():25-33. PubMed ID: 18680735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New role for spinal Stargazin in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated pain sensitization after inflammation.
    Tao F; Skinner J; Su Q; Johns RA
    J Neurosci Res; 2006 Sep; 84(4):867-73. PubMed ID: 16791853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow and selective death of spinal motor neurons in vivo by intrathecal infusion of kainic acid: implications for AMPA receptor-mediated excitotoxicity in ALS.
    Sun H; Kawahara Y; Ito K; Kanazawa I; Kwak S
    J Neurochem; 2006 Aug; 98(3):782-91. PubMed ID: 16893420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of non-N-methyl-D-aspartate ionotropic glutamate receptors in the spinal transmission of nociception in normal animals and animals with carrageenan inflammation.
    Stanfa LC; Dickenson AH
    Neuroscience; 1999; 93(4):1391-8. PubMed ID: 10501464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.