BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16777121)

  • 1. Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A
    J Colloid Interface Sci; 2006 Sep; 301(1):333-6. PubMed ID: 16777121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A; Orblin E; Fardim P
    J Colloid Interface Sci; 2007 Dec; 316(2):360-6. PubMed ID: 17889889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A; Orblin E; Fardim P
    Langmuir; 2007 Oct; 23(21):10801-6. PubMed ID: 17854212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids.
    Freire CS; Silvestre AJ; Pascoal Neto C; Gandini A; Fardim P; Holmbom B
    J Colloid Interface Sci; 2006 Sep; 301(1):205-9. PubMed ID: 16730019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements.
    Pasquini D; Belgacem MN; Gandini A; Curvelo AA
    J Colloid Interface Sci; 2006 Mar; 295(1):79-83. PubMed ID: 16125715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates.
    Cunha AG; Freire CS; Silvestre AJ; Pascoal Neto C; Gandini A; Orblin E; Fardim P
    Biomacromolecules; 2007 Apr; 8(4):1347-52. PubMed ID: 17378606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface acylation of cellulose whiskers by drying aqueous emulsion.
    Yuan H; Nishiyama Y; Wada M; Kuga S
    Biomacromolecules; 2006 Mar; 7(3):696-700. PubMed ID: 16529402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers.
    Braun B; Dorgan JR
    Biomacromolecules; 2009 Feb; 10(2):334-41. PubMed ID: 19102697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of jute fibers for the production of green-composites.
    Corrales F; Vilaseca F; Llop M; Gironès J; Méndez JA; Mutjè P
    J Hazard Mater; 2007 Jun; 144(3):730-5. PubMed ID: 17320283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose materials modified by antiseptics and their antimicrobial properties.
    Kotelnikova NE; Panarin EF; Zaikina NA; Kudina NP; Yongfa H; Su LS; Bobasheva AS; Lavrentiev VV
    Polim Med; 1998; 28(3-4):37-53. PubMed ID: 10093155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase.
    Igarashi K; Wada M; Samejima M
    FEBS J; 2007 Apr; 274(7):1785-92. PubMed ID: 17319934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the hydrophobicity of mesoporous silicas and clays with silica pillars by water adsorption and DRIFT.
    Pires J; Pinto M; Estella J; Echeverría JC
    J Colloid Interface Sci; 2008 Jan; 317(1):206-13. PubMed ID: 17945244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP.
    Lindqvist J; Nyström D; Ostmark E; Antoni P; Carlmark A; Johansson M; Hult A; Malmström E
    Biomacromolecules; 2008 Aug; 9(8):2139-45. PubMed ID: 18636775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Esterified coir pith as an adsorbent for the removal of Co(II) from aqueous solution.
    Parab H; Joshi S; Shenoy N; Lali A; Sarma US; Sudersanan M
    Bioresour Technol; 2008 Apr; 99(6):2083-6. PubMed ID: 17611104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability changes induced by biochemical surface reactions.
    D'Andrea SC; Fadeev AY
    Langmuir; 2006 Apr; 22(9):3962-3. PubMed ID: 16618132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and inactivation behavior of horseradish peroxidase on cellulosic fiber surfaces.
    Di Risio S; Yan N
    J Colloid Interface Sci; 2009 Oct; 338(2):410-9. PubMed ID: 19643429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic cellulose nanocomposites.
    Gonçalves G; Marques PA; Trindade T; Neto CP; Gandini A
    J Colloid Interface Sci; 2008 Aug; 324(1-2):42-6. PubMed ID: 18508072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride.
    Mulinari DR; Cruz TG; Cioffi MO; Voorwald HJ; Da Silva ML; Rocha GJ
    Carbohydr Res; 2010 Sep; 345(13):1865-71. PubMed ID: 20599190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis.
    Wang L; Zhang Y; Gao P; Shi D; Liu H; Gao H
    Biotechnol Bioeng; 2006 Feb; 93(3):443-56. PubMed ID: 16196052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and properties of low molecular weight amphiphilic peptide hydrogelators.
    Mitra RN; Das D; Roy S; Das PK
    J Phys Chem B; 2007 Dec; 111(51):14107-13. PubMed ID: 18052148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.