BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 16777437)

  • 1. Isolation and phylogeny of novel cytochrome P450 genes from tunicates (Ciona spp.): a CYP3 line in early deuterostomes?
    Verslycke T; Goldstone JV; Stegeman JJ
    Mol Phylogenet Evol; 2006 Sep; 40(3):760-71. PubMed ID: 16777437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome P450 1 genes in early deuterostomes (tunicates and sea urchins) and vertebrates (chicken and frog): origin and diversification of the CYP1 gene family.
    Goldstone JV; Goldstone HM; Morrison AM; Tarrant A; Kern SE; Woodin BR; Stegeman JJ
    Mol Biol Evol; 2007 Dec; 24(12):2619-31. PubMed ID: 17916789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis.
    Marino R; Kimura Y; De Santis R; Lambris JD; Pinto MR
    Immunogenetics; 2002 Mar; 53(12):1055-64. PubMed ID: 11904683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development.
    Takahashi T; Holland PW
    Development; 2004 Jul; 131(14):3285-94. PubMed ID: 15201221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Globin genes are present in Ciona intestinalis.
    Ebner B; Burmester T; Hankeln T
    Mol Biol Evol; 2003 Sep; 20(9):1521-5. PubMed ID: 12832645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of ancestral genes in the genomic evolution of Ciona intestinalis.
    Hughes AL; Friedman R
    Evol Dev; 2005; 7(3):196-200. PubMed ID: 15876192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic insertion-deletion of introns in deuterostome EF-1alpha genes.
    Wada H; Kobayashi M; Sato R; Satoh N; Miyasaka H; Shirayama Y
    J Mol Evol; 2002 Jan; 54(1):118-28. PubMed ID: 11734905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus.
    Gissi C; Pesole G; Cattaneo E; Tartari M
    BMC Genomics; 2006 Nov; 7():288. PubMed ID: 17092333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ciona intestinalis genome: when the constraints are off.
    Holland LZ; Gibson-Brown JJ
    Bioessays; 2003 Jun; 25(6):529-32. PubMed ID: 12766941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and hepatic expression profiles of cytochrome P450 1-4 isozymes in common minke whales (Balaenoptera acutorostrata).
    Niimi S; Kim EY; Iwata H; Watanabe MX; Yasunaga G; Fujise Y; Tanabe S
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):667-81. PubMed ID: 17526421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retroduplication and loss of parental genes is a mechanism for the generation of intronless genes in Ciona intestinalis and Ciona savignyi.
    Kim DS; Wang Y; Oh HJ; Choi D; Lee K; Hahn Y
    Dev Genes Evol; 2014 Dec; 224(4-6):255-60. PubMed ID: 25037949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of the cholecystokinin/gastrin family.
    Johnsen AH
    Front Neuroendocrinol; 1998 Apr; 19(2):73-99. PubMed ID: 9578981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CiMT-1, an unusual chordate metallothionein gene in Ciona intestinalis genome: structure and expression studies.
    Franchi N; Boldrin F; Ballarin L; Piccinni E
    J Exp Zool A Ecol Genet Physiol; 2011 Feb; 315A(2):90-100. PubMed ID: 21328559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of sea squirt telomerase reverse transcriptase.
    Li Y; Yates JA; Chen JJ
    Gene; 2007 Oct; 400(1-2):16-24. PubMed ID: 17601686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fgf genes in the basal chordate Ciona intestinalis.
    Satou Y; Imai KS; Satoh N
    Dev Genes Evol; 2002 Oct; 212(9):432-8. PubMed ID: 12373588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three insulin-relaxin-like genes in Ciona intestinalis.
    Olinski RP; Dahlberg C; Thorndyke M; Hallböök F
    Peptides; 2006 Nov; 27(11):2535-46. PubMed ID: 16920224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes.
    Okamura Y; Nishino A; Murata Y; Nakajo K; Iwasaki H; Ohtsuka Y; Tanaka-Kunishima M; Takahashi N; Hara Y; Yoshida T; Nishida M; Okado H; Watari H; Meinertzhagen IA; Satoh N; Takahashi K; Satou Y; Okada Y; Mori Y
    Physiol Genomics; 2005 Aug; 22(3):269-82. PubMed ID: 15914577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urochordate betagamma-crystallin and the evolutionary origin of the vertebrate eye lens.
    Shimeld SM; Purkiss AG; Dirks RP; Bateman OA; Slingsby C; Lubsen NH
    Curr Biol; 2005 Sep; 15(18):1684-9. PubMed ID: 16169492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascidian larva reveals ancient origin of vertebrate-skeletal-muscle troponin I characteristics in chordate locomotory muscle.
    Cleto CL; Vandenberghe AE; MacLean DW; Pannunzio P; Tortorelli C; Meedel TH; Satou Y; Satoh N; Hastings KE
    Mol Biol Evol; 2003 Dec; 20(12):2113-22. PubMed ID: 12949123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.