BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 16777956)

  • 1. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.
    Lariguet P; Schepens I; Hodgson D; Pedmale UV; Trevisan M; Kami C; de Carbonnel M; Alonso JM; Ecker JR; Liscum E; Fankhauser C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10134-9. PubMed ID: 16777956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.
    Kami C; Allenbach L; Zourelidou M; Ljung K; Schütz F; Isono E; Watahiki MK; Yamamoto KT; Schwechheimer C; Fankhauser C
    Plant J; 2014 Feb; 77(3):393-403. PubMed ID: 24286493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning.
    de Carbonnel M; Davis P; Roelfsema MR; Inoue S; Schepens I; Lariguet P; Geisler M; Shimazaki K; Hangarter R; Fankhauser C
    Plant Physiol; 2010 Mar; 152(3):1391-405. PubMed ID: 20071603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium.
    Zhao X; Wang YL; Qiao XR; Wang J; Wang LD; Xu CS; Zhang X
    Plant Physiol; 2013 Jul; 162(3):1539-51. PubMed ID: 23674105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the site of light perception and initiation of phototropism in Arabidopsis.
    Preuten T; Hohm T; Bergmann S; Fankhauser C
    Curr Biol; 2013 Oct; 23(19):1934-8. PubMed ID: 24076239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex.
    Sullivan S; Takemiya A; Kharshiing E; Cloix C; Shimazaki KI; Christie JM
    Plant J; 2016 Dec; 88(6):907-920. PubMed ID: 27545835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear phytochrome A signaling promotes phototropism in Arabidopsis.
    Kami C; Hersch M; Trevisan M; Genoud T; Hiltbrunner A; Bergmann S; Fankhauser C
    Plant Cell; 2012 Feb; 24(2):566-76. PubMed ID: 22374392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.
    Boccalandro HE; De Simone SN; Bergmann-Honsberger A; Schepens I; Fankhauser C; Casal JJ
    Plant Physiol; 2008 Jan; 146(1):108-15. PubMed ID: 18024556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor.
    Demarsy E; Schepens I; Okajima K; Hersch M; Bergmann S; Christie J; Shimazaki K; Tokutomi S; Fankhauser C
    EMBO J; 2012 Aug; 31(16):3457-67. PubMed ID: 22781128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKS1 plays a role in red-light-based positive phototropism in roots.
    Molas ML; Kiss JZ
    Plant Cell Environ; 2008 Jun; 31(6):842-9. PubMed ID: 18266898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 affects phot2-dependent phototropism in
    Kimura T; Haga K; Sakai T
    Plant Signal Behav; 2022 Dec; 17(1):2027138. PubMed ID: 35068333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.
    Lariguet P; Fankhauser C
    Plant J; 2004 Dec; 40(5):826-34. PubMed ID: 15546364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A growth regulatory loop that provides homeostasis to phytochrome a signaling.
    Lariguet P; Boccalandro HE; Alonso JM; Ecker JR; Chory J; Casal JJ; Fankhauser C
    Plant Cell; 2003 Dec; 15(12):2966-78. PubMed ID: 14615593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis ROOT PHOTOTROPISM2 Contributes to the Adaptation to High-Intensity Light in Phototropic Responses.
    Haga K; Tsuchida-Mayama T; Yamada M; Sakai T
    Plant Cell; 2015 Apr; 27(4):1098-112. PubMed ID: 25873385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and subcellular localization of phototropin 1.
    Sakamoto K; Briggs WR
    Plant Cell; 2002 Aug; 14(8):1723-35. PubMed ID: 12172018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants.
    Suetsugu N; Takemiya A; Kong SG; Higa T; Komatsu A; Shimazaki K; Kohchi T; Wada M
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10424-9. PubMed ID: 27578868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process.
    Schumacher P; Demarsy E; Waridel P; Petrolati LA; Trevisan M; Fankhauser C
    Nat Commun; 2018 Jun; 9(1):2403. PubMed ID: 29921904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana.
    Zhao X; Zhao Q; Xu C; Wang J; Zhu J; Shang B; Zhang X
    J Integr Plant Biol; 2018 Jul; 60(7):562-577. PubMed ID: 29393576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The continuing arc toward phototropic enlightenment.
    Liscum E; Nittler P; Koskie K
    J Exp Bot; 2020 Mar; 71(5):1652-1658. PubMed ID: 31907539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis.
    Cho HY; Tseng TS; Kaiserli E; Sullivan S; Christie JM; Briggs WR
    Plant Physiol; 2007 Jan; 143(1):517-29. PubMed ID: 17085510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.