These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16777996)

  • 21. Physiology. Lactic acid--the latest performance-enhancing drug.
    Allen D; Westerblad H
    Science; 2004 Aug; 305(5687):1112-3. PubMed ID: 15326341
    [No Abstract]   [Full Text] [Related]  

  • 22. Intracellular acidosis enhances the excitability of working muscle.
    Pedersen TH; Nielsen OB; Lamb GD; Stephenson DG
    Science; 2004 Aug; 305(5687):1144-7. PubMed ID: 15326352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is interstitial K+ accumulation a key factor in the fatigue process under physiological conditions?
    Place N
    J Physiol; 2008 Feb; 586(4):1207-8; author reply 1209. PubMed ID: 18187467
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanism of fatigue in small muscle groups.
    Maassen N; Schneider G
    Int J Sports Med; 1997 Oct; 18 Suppl 4():S320-1. PubMed ID: 9391849
    [No Abstract]   [Full Text] [Related]  

  • 25. Role of the T-system and the Na+-K+ pump on fatigue development in phasic skeletal muscle.
    Gonzalez-Serratos H; Chang R; Rozycka M; Blaustein M; Dedeyne PG
    J Muscle Res Cell Motil; 2004; 25(8):598-600. PubMed ID: 16118851
    [No Abstract]   [Full Text] [Related]  

  • 26. Low-frequency fatigue.
    Keeton RB; Binder-Macleod SA
    Phys Ther; 2006 Aug; 86(8):1146-50. PubMed ID: 16879048
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles.
    Broch-Lips M; Overgaard K; Praetorius HA; Nielsen OB
    J Appl Physiol (1985); 2007 Aug; 103(2):494-503. PubMed ID: 17446415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Counterpoint: Lactic acid is not the only physicochemical contributor to the acidosis of exercise.
    Lindinger MI; Heigenhauser GJ
    J Appl Physiol (1985); 2008 Jul; 105(1):359-61; discussion 361-2. PubMed ID: 18641212
    [No Abstract]   [Full Text] [Related]  

  • 31. Still no convincing evidence to call out the post lactic acidosis era.
    Beneke R
    J Appl Physiol (1985); 2008 Jul; 105(1):366-7. PubMed ID: 18680851
    [No Abstract]   [Full Text] [Related]  

  • 32. Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue.
    Westerblad H
    Med Sci Sports Exerc; 2016 Nov; 48(11):2339-2342. PubMed ID: 27755383
    [No Abstract]   [Full Text] [Related]  

  • 33. Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences.
    Kristensen M; Juel C
    Acta Physiol (Oxf); 2010 Feb; 198(2):105-23. PubMed ID: 19769637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of lactate and other ions in inactive skeletal muscle: influence of hyperkalemic lactacidosis.
    Chin ER; Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1375-86. PubMed ID: 9534949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle fatigue and reactive oxygen species.
    Juel C
    J Physiol; 2006 Oct; 576(Pt 1):1. PubMed ID: 16901938
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The role of the mitochondrial permeability transition pore in the development of skeletal muscle fatigue in dogs].
    Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF
    Fiziol Zh (1994); 2004; 50(5):3-10. PubMed ID: 15693291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of nitric oxide on the efficiency of oxygen consumption by the working skeletal muscle in fatigue].
    Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF
    Fiziol Zh (1994); 2005; 51(1):33-42. PubMed ID: 15801198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What does glycolysis make and why is it important?
    Brooks GA
    J Appl Physiol (1985); 2010 Jun; 108(6):1450-1. PubMed ID: 20339007
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.