These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Active and passive components in the length-dependent stiffness of tracheal smooth muscle during isotonic shortening. Meiss RA; Pidaparti RM J Appl Physiol (1985); 2005 Jan; 98(1):234-41. PubMed ID: 15333613 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the length response to a force step in smooth muscle from rabbit urinary bladder. Hellstrand P; Johansson B Acta Physiol Scand; 1979 Jun; 106(2):221-38. PubMed ID: 506760 [TBL] [Abstract][Full Text] [Related]
6. Evidence that actomyosin cross bridges contribute to "passive" tension in detrusor smooth muscle. Ratz PH; Speich JE Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1424-35. PubMed ID: 20375119 [TBL] [Abstract][Full Text] [Related]
7. A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Murtada SI; Kroon M; Holzapfel GA Biomech Model Mechanobiol; 2010 Dec; 9(6):749-62. PubMed ID: 20354752 [TBL] [Abstract][Full Text] [Related]
8. A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour. Kroon M Math Med Biol; 2010 Jun; 27(2):129-55. PubMed ID: 19592484 [TBL] [Abstract][Full Text] [Related]
9. Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament overlap. Murtada SC; Arner A; Holzapfel GA J Theor Biol; 2012 Mar; 297():176-86. PubMed ID: 22108241 [TBL] [Abstract][Full Text] [Related]
11. Modulation of passive force in single skeletal muscle fibres. Rassier DE; Lee EJ; Herzog W Biol Lett; 2005 Sep; 1(3):342-5. PubMed ID: 17148202 [TBL] [Abstract][Full Text] [Related]
12. Fourier transform analysis of rabbit detrusor autonomous contractions reveals length dependent increases in tone and slow wave development at long lengths. Byrne MD; Klausner AP; Speich JE; Southern JB; Habibi JR; Ratz PH J Urol; 2013 Jul; 190(1):334-40. PubMed ID: 23485511 [TBL] [Abstract][Full Text] [Related]
13. New insights into the passive force enhancement in skeletal muscles. Lee EJ; Joumaa V; Herzog W J Biomech; 2007; 40(4):719-27. PubMed ID: 17097664 [TBL] [Abstract][Full Text] [Related]
14. The force recovery following repeated quick releases applied to pig urinary bladder smooth muscle. van Mastrigt R J Muscle Res Cell Motil; 1991 Feb; 12(1):45-52. PubMed ID: 2050811 [TBL] [Abstract][Full Text] [Related]
15. [The relationship between phenotype transformation and biomechanical properties of detrusor smooth muscle cell subjected to the cyclic mechanical stretch]. Gong Y; Song B; Jin XY; Xiong EQ Zhonghua Wai Ke Za Zhi; 2003 Dec; 41(12):901-5. PubMed ID: 14728829 [TBL] [Abstract][Full Text] [Related]
16. Molecular basis of force development by skeletal muscles during and after stretch. Rassier DE Mol Cell Biomech; 2009 Dec; 6(4):229-41. PubMed ID: 19899446 [TBL] [Abstract][Full Text] [Related]
18. An expanded latch-bridge model of protein kinase C-mediated smooth muscle contraction. Hai CM; Kim HR J Appl Physiol (1985); 2005 Apr; 98(4):1356-65. PubMed ID: 15557014 [TBL] [Abstract][Full Text] [Related]
19. Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall. Nagatomi J; Toosi KK; Chancellor MB; Sacks MS Biomech Model Mechanobiol; 2008 Oct; 7(5):395-404. PubMed ID: 17690929 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of the length-active tension relationship in rabbit detrusor. Speich JE; Almasri AM; Bhatia H; Klausner AP; Ratz PH Am J Physiol Renal Physiol; 2009 Oct; 297(4):F1119-28. PubMed ID: 19675182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]