These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 16778127)

  • 1. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.
    Maack C; Cortassa S; Aon MA; Ganesan AN; Liu T; O'Rourke B
    Circ Res; 2006 Jul; 99(2):172-82. PubMed ID: 16778127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
    Liu T; O'Rourke B
    Circ Res; 2008 Aug; 103(3):279-88. PubMed ID: 18599868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes.
    Zhou Z; Matlib MA; Bers DM
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):379-403. PubMed ID: 9518700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.
    Kohlhaas M; Liu T; Knopp A; Zeller T; Ong MF; Böhm M; O'Rourke B; Maack C
    Circulation; 2010 Apr; 121(14):1606-13. PubMed ID: 20351235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
    Kohlhaas M; Maack C
    Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells.
    Smets I; Caplanusi A; Despa S; Molnar Z; Radu M; VandeVen M; Ameloot M; Steels P
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F784-94. PubMed ID: 14665432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A.
    Wei AC; Liu T; Cortassa S; Winslow RL; O'Rourke B
    Biochim Biophys Acta; 2011 Jul; 1813(7):1373-81. PubMed ID: 21362444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria.
    Belmonte S; Morad M
    J Physiol; 2008 Mar; 586(5):1379-97. PubMed ID: 18187469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S; McCarron JG
    Cell Calcium; 2009 Aug; 46(2):107-13. PubMed ID: 19577805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes.
    Wüst RC; Helmes M; Martin JL; van der Wardt TJ; Musters RJ; van der Velden J; Stienen GJ
    J Physiol; 2017 Mar; 595(6):2001-2019. PubMed ID: 28028811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+.
    Motloch LJ; Larbig R; Gebing T; Reda S; Schwaiger A; Leitner J; Wolny M; Eckardt L; Hoppe UC
    PLoS One; 2016; 11(2):e0148359. PubMed ID: 26849136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes.
    Sedova M; Dedkova EN; Blatter LA
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C840-50. PubMed ID: 16723510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex differences in the mechano-energetic effects of genistein on stunned rat and guinea pig hearts.
    Colareda GA; Ragone MI; Consolini AE
    Clin Exp Pharmacol Physiol; 2016 Jan; 43(1):102-15. PubMed ID: 26452245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the Na+/Ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes.
    Liu T; O'Rourke B
    J Biol Chem; 2013 Nov; 288(44):31984-92. PubMed ID: 24045952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of effects of isoproterenol and dihydroouabain on calcium transients and contraction in cultured rat ventricular cells.
    Tatsukawa Y; Arita M; Kiyosue T; Mikuriya Y; Nasu M
    J Mol Cell Cardiol; 1993 Jun; 25(6):707-20. PubMed ID: 8411196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Na+/Ca2+ exchange blocker SEA0400 fails to enhance cytosolic Ca2+ transient and contractility in canine ventricular cardiomyocytes.
    Birinyi P; Tóth A; Jóna I; Acsai K; Almássy J; Nagy N; Prorok J; Gherasim I; Papp Z; Hertelendi Z; Szentandrássy N; Bányász T; Fülöp F; Papp JG; Varró A; Nánási PP; Magyar J
    Cardiovasc Res; 2008 Jun; 78(3):476-84. PubMed ID: 18252759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mitochondrial calcium efflux by clonazepam in intact single rat cardiomyocytes and effects on NADH production.
    Griffiths EJ; Wei SK; Haigney MC; Ocampo CJ; Stern MD; Silverman HS
    Cell Calcium; 1997 Apr; 21(4):321-9. PubMed ID: 9160168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling protein-2 modulates myocardial excitation-contraction coupling.
    Turner JD; Gaspers LD; Wang G; Thomas AP
    Circ Res; 2010 Mar; 106(4):730-8. PubMed ID: 20056920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.