These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 16779837)

  • 1. Bubble CPAP elicits decreases in exhaled nitric oxide in rabbits.
    Hua YM; Yuh YS; Lee CM; Lien SH; Hung CH
    Pediatr Pulmonol; 2006 Aug; 41(8):779-86. PubMed ID: 16779837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between bubble CPAP and ventilator-derived CPAP in rabbits.
    Huang WC; Hua YM; Lee CM; Chang CC; Yuh YS
    Pediatr Neonatol; 2008 Dec; 49(6):223-9. PubMed ID: 19166119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of continuous positive airway pressure/positive end-expiratory pressure and pressure-support ventilation on work of breathing, using an animal model.
    Heulitt MJ; Holt SJ; Wilson S; Hall RA
    Respir Care; 2003 Jul; 48(7):689-96. PubMed ID: 12841860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A randomized controlled trial of post-extubation bubble continuous positive airway pressure versus Infant Flow Driver continuous positive airway pressure in preterm infants with respiratory distress syndrome.
    Gupta S; Sinha SK; Tin W; Donn SM
    J Pediatr; 2009 May; 154(5):645-50. PubMed ID: 19230906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive respiratory support of juvenile rabbits by high-amplitude bubble continuous positive airway pressure.
    Diblasi RM; Zignego JC; Tang DM; Hildebrandt J; Smith CV; Hansen TN; Richardson CP
    Pediatr Res; 2010 Jun; 67(6):624-9. PubMed ID: 20308940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in exhaled nitric oxide in children with asthma during a 1-week stay in a mountain village sanatorium.
    Barreto M; Rennerova Z; Montesano M; Alterio A; Trubacova D; Ronchetti R; Villa MP
    J Asthma; 2008 Aug; 45(6):453-8. PubMed ID: 18612896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased lung injury after surfactant in piglets treated with continuous positive airway pressure or synchronized intermittent mandatory ventilation.
    Nold JL; Meyers PA; Worwa CT; Goertz RH; Huseby K; Schauer G; Mammel MC
    Neonatology; 2007; 92(1):19-25. PubMed ID: 17596733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of ventilatory settings on exhaled nitric oxide during high frequency oscillatory ventilation.
    Yuh YS; Hua YM
    Pediatr Pulmonol; 2009 Aug; 44(8):800-5. PubMed ID: 19598231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of automatic and continuous positive airway pressure in a night-by-night analysis: a randomized, crossover study.
    Galetke W; Anduleit N; Richter K; Stieglitz S; Randerath WJ
    Respiration; 2008; 75(2):163-9. PubMed ID: 17148931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Exhaled nitric oxide in children under 4 years of age with recurrent bronchitis].
    de Mir Messa I; Moreno Galdó A; Cobos Barroso N; Gartner S; Martín De Vicente C; Liñán Cortés S
    Arch Bronconeumol; 2009 Sep; 45(9):442-8. PubMed ID: 19501946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exhaled nitric oxide is reduced in infants with rhinorrhea.
    Franklin PJ; Turner SW; Hall GL; Moeller A; Stick SM
    Pediatr Pulmonol; 2005 Feb; 39(2):117-9. PubMed ID: 15573394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in functional residual capacity during weaning from mechanical ventilation: a pilot study.
    Heinze H; Sedemund-Adib B; Heringlake M; Meier T; Eichler W
    Anesth Analg; 2009 Mar; 108(3):911-5. PubMed ID: 19224803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abdominal lymph flow in an endotoxin sepsis model: influence of spontaneous breathing and mechanical ventilation.
    Lattuada M; Hedenstierna G
    Crit Care Med; 2006 Nov; 34(11):2792-8. PubMed ID: 16971857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pulmonary and hemodynamic effects of two different recruitment maneuvers after cardiac surgery.
    Celebi S; Köner O; Menda F; Korkut K; Suzer K; Cakar N
    Anesth Analg; 2007 Feb; 104(2):384-90. PubMed ID: 17242096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serial exhaled nitric oxide measurements in the assessment of laboratory animal allergy.
    Hewitt RS; Smith AD; Cowan JO; Schofield JC; Herbison GP; Taylor DR
    J Asthma; 2008 Mar; 45(2):101-7. PubMed ID: 18350400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Offline exhaled nitric oxide in emergency department and subsequent acute asthma control.
    Delclaux C; Sembach N; Claessens YE; Dolbeau G; Chevalier-Bidaud B; Renaud B; Allo JC; Zerah-Lancner F; Davido A; Dinh-Xuan AT
    J Asthma; 2008 Dec; 45(10):867-73. PubMed ID: 19085575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodological aspects of exhaled nitric oxide measurements in infants.
    Gabriele C; van der Wiel EC; Nieuwhof EM; Moll HA; Merkus PJ; de Jongste JC
    Pediatr Allergy Immunol; 2007 Feb; 18(1):36-41. PubMed ID: 17295797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Update on one-lung ventilation: the use of continuous positive airway pressure ventilation and positive end-expiratory pressure ventilation--clinical application.
    Grichnik KP; Shaw A
    Curr Opin Anaesthesiol; 2009 Feb; 22(1):23-30. PubMed ID: 19295290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of expiratory pressure reduction (C-Flex method) during CPAP therapy].
    Rühle KH; Domanski U; Happel A; Nilius G
    Pneumologie; 2007 Feb; 61(2):86-9. PubMed ID: 17290312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive end-expiratory pressure ventilation elicits increases in endogenously formed nitric oxide as detected in air exhaled by rabbits.
    Persson MG; Lönnqvist PA; Gustafsson LE
    Anesthesiology; 1995 Apr; 82(4):969-74. PubMed ID: 7717570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.