These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1677993)

  • 1. Vascular damage during PDT as monitored in the chick chorioallantoic membrane.
    Gottfried V; Lindenbaum ES; Kimel S
    Int J Radiat Biol; 1991; 60(1-2):349-54. PubMed ID: 1677993
    [No Abstract]   [Full Text] [Related]  

  • 2. Demonstration of synergistic effects of hyperthermia and photodynamic therapy using the chick chorioallantoic membrane model.
    Kimel S; Svaasand LO; Hammer-Wilson M; Gottfried V; Cheng S; Svaasand E; Berns MW
    Lasers Surg Med; 1992; 12(4):432-40. PubMed ID: 1379665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined photodynamic and photothermal induced injury enhances damage to in vivo model blood vessels.
    Kelly KM; Kimel S; Smith T; Stacy A; Hammer-Wilson MJ; Svaasand LO; Nelson JS
    Lasers Surg Med; 2004; 34(5):407-13. PubMed ID: 15216534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytotoxic, nuclear, and growth inhibitory effects of photodynamic drugs on pancreatic carcinoma cells.
    Ward AJ; Matthews EK
    Cancer Lett; 1996 Apr; 102(1-2):39-47. PubMed ID: 8603377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural changes in Tritrichomonas foetus after treatments with AlPcS4 and photodynamic therapy.
    da Silva NS; Ribeiro Cde M; Machado AH; Pacheco-Soares C
    Vet Parasitol; 2007 May; 146(1-2):175-81. PubMed ID: 17399904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chick chorioallantoic membrane (CAM) as an in vivo model for photodynamic therapy.
    Gottfried V; Lindenbaum ES; Kimel S
    J Photochem Photobiol B; 1992 Jan; 12(2):204-7. PubMed ID: 1619519
    [No Abstract]   [Full Text] [Related]  

  • 7. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells.
    Agarwal ML; Clay ME; Harvey EJ; Evans HH; Antunez AR; Oleinick NL
    Cancer Res; 1991 Nov; 51(21):5993-6. PubMed ID: 1933862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preferential tumoral phototoxicity of chloroaluminum phthalocyanine in photodynamic therapy of human leukemic cells].
    Daziano JP; Humeau L; Chabannon C; Mannoni P; Julliard M
    C R Seances Soc Biol Fil; 1995; 189(3):407-17. PubMed ID: 8521089
    [No Abstract]   [Full Text] [Related]  

  • 9. Enhancement of photodynamic cell killing (with chloroaluminum phthalocyanine) by treatment of V79 cells with the ionophore nigericin.
    Varnes ME; Clay ME; Freeman K; Antunez AR; Oleinick NL
    Cancer Res; 1990 Mar; 50(5):1620-5. PubMed ID: 2302719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria, endoplasmic reticulum and actin filament behavior after PDT with chloroaluminum phthalocyanine liposomal in HeLa cells.
    Maftoum-Costa M; Naves KT; Oliveira AL; Tedesco AC; da Silva NS; Pacheco-Soares C
    Cell Biol Int; 2008 Aug; 32(8):1024-8. PubMed ID: 18485750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phthalocyanines as photodynamic sensitizers.
    Rosenthal I
    Photochem Photobiol; 1991 Jun; 53(6):859-70. PubMed ID: 1886943
    [No Abstract]   [Full Text] [Related]  

  • 12. Chloroaluminum sulfonated phthalocyanine versus dihematoporphyrin ether: early vascular events in the rat window chamber.
    Stern SJ; Flock S; Small S; Thomsen S; Jacques S
    Laryngoscope; 1991 Nov; 101(11):1219-25. PubMed ID: 1834899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevation of GRP-78 and loss of HSP-70 following photodynamic treatment of V79 cells: sensitization by nigericin.
    Xue LY; Agarwal ML; Varnes ME
    Photochem Photobiol; 1995 Jul; 62(1):135-43. PubMed ID: 7638257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy.
    Ben-Hur E; Rosenthal I
    Int J Radiat Biol Relat Stud Phys Chem Med; 1985 Feb; 47(2):145-7. PubMed ID: 3872269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Y1068 phosphorylation is the most sensitive target of disulfonated tetraphenylporphyrin-based photodynamic therapy on epidermal growth factor receptor.
    Weyergang A; Selbo PK; Berg K
    Biochem Pharmacol; 2007 Jul; 74(2):226-35. PubMed ID: 17531956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer.
    Kuzyniak W; Schmidt J; Glac W; Berkholz J; Steinemann G; Hoffmann B; Ermilov EA; Gürek AG; Ahsen V; Nitzsche B; Höpfner M
    Int J Oncol; 2017 Mar; 50(3):953-963. PubMed ID: 28098886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-treatment interactions of photodynamic and radiation-induced cytotoxic lesions.
    Ramakrishnan N; Clay ME; Friedman LR; Antunez AR; Oleinick NL
    Photochem Photobiol; 1990 Sep; 52(3):555-9. PubMed ID: 2284348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of ultrastructural changes in the isolated crayfish mechanoreceptor neuron under photodynamic impact.
    Fedorenko GM; Uzdensky AB
    J Neurosci Res; 2008 May; 86(6):1409-16. PubMed ID: 18061942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic toxicology of the photosensitization of Chinese hamster cells by phthalocyanines.
    Ben-Hur E; Fujihara T; Suzuki F; Elkind MM
    Photochem Photobiol; 1987 Feb; 45(2):227-30. PubMed ID: 3562586
    [No Abstract]   [Full Text] [Related]  

  • 20. A new drug-screening procedure for photosensitizing agents used in photodynamic therapy for CNV.
    Lange N; Ballini JP; Wagnieres G; van den Bergh H
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):38-46. PubMed ID: 11133846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.