These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16779939)

  • 1. Detoxification and bioremediation potential of a Pseudomonas fluorescens isolate against the major Indian water pollutants.
    Ali Khan MW; Ahmad M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(4):659-74. PubMed ID: 16779939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain.
    Wasi S; Jeelani G; Ahmad M
    Chemosphere; 2008 Apr; 71(7):1348-55. PubMed ID: 18164050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation potential of
    D Alsukaibi AK; Mechi L; Alimi FR; A Alshamari AKA; Alshammari EM; Ahmed A O; Sherwani S; Ali Khan MW
    Bioinformation; 2023; 19(9):901-907. PubMed ID: 37928494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indigenous heavy metal multiresistant microbiota of Las Catonas stream.
    Vullo DL; Ceretti HM; Hughes EA; Ramírez S; Zalts A
    Environ Monit Assess; 2005 Jun; 105(1-3):81-97. PubMed ID: 15952513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals.
    Rehman A; Shakoori FR; Shakoori AR
    Bioresour Technol; 2008 Jun; 99(9):3890-5. PubMed ID: 17888657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land use impact on potentially toxic metals concentration on surface water and resistant microorganisms in watersheds.
    Saran LM; Pissarra TCT; Silveira GA; Constancio MTL; de Melo WJ; Alves LMC
    Ecotoxicol Environ Saf; 2018 Dec; 166():366-374. PubMed ID: 30278399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allium cepa derived EROD as a potential biomarker for the presence of certain pesticides in water.
    Fatima RA; Ahmad M
    Chemosphere; 2006 Jan; 62(4):527-37. PubMed ID: 16085274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of crude oil contaminated soil by bioaugmentation of Pseudomonas fluorescens NS1.
    Barathi S; Vasudevan N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Sep; 38(9):1857-66. PubMed ID: 12940487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa.
    Manal MA; El-Naggar S; El-Aasar A; Barakat Khlood I
    Water Res; 2005 Dec; 39(20):5045-54. PubMed ID: 16316674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene.
    Montánchez I; Kaberdina AC; Sevillano E; Gallego L; Rodríguez-Couto S; Kaberdin VR
    Folia Microbiol (Praha); 2017 Jul; 62(4):325-334. PubMed ID: 28188482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on bioremediation of heavy metals by solitary ascidian, Phallusia nigra, between Thoothukudi and Vizhinjam ports of India.
    Abdul Jaffar Ali H; Tamilselvi M; Akram AS; Kaleem Arshan ML; Sivakumar V
    Ecotoxicol Environ Saf; 2015 Nov; 121():93-9. PubMed ID: 26026676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics of heavy metals enrichment in algae ano its application prospects].
    Lu K; Tang JJ; Jiang D
    Ying Yong Sheng Tai Xue Bao; 2006 Jan; 17(1):118-22. PubMed ID: 16689246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].
    Hudz' SP; Peretiatko TB; Moroz OM; Hnatush SO; Klym IR
    Mikrobiol Z; 2011; 73(2):33-8. PubMed ID: 21598657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration.
    Choudhary S; Sar P
    Bioresour Technol; 2009 May; 100(9):2482-92. PubMed ID: 19162475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Kinetic Studies and Performance Evaluation of Biofilm and Biomass Characteristics of Pseudomonas fluorescens in Degrading Synthetic Phenolic Effluent in Inverse Fluidized Bed Biofilm Reactor.
    Begum SS; Radha KV
    Water Environ Res; 2016 May; 88(5):415-24. PubMed ID: 27131305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant.
    Pakuła A; Bieszkiewicz E; Boszczyk-Maleszak H; Mycielski R
    Acta Microbiol Pol; 1999; 48(4):373-80. PubMed ID: 10756720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2].
    Zhang YX; Wang J; Chai TY; Zhang Q; Liu JG; Li X; Bai ZQ; Su ZJ
    Huan Jing Ke Xue; 2012 Oct; 33(10):3613-9. PubMed ID: 23233996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor.
    Singh R; Bishnoi NR; Kirrolia A; Kumar R
    Bioresour Technol; 2013 Jan; 127():49-58. PubMed ID: 23131622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.