These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16779939)

  • 41. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: A proteome analysis.
    Poirier I; Hammann P; Kuhn L; Bertrand M
    Aquat Toxicol; 2013 Mar; 128-129():215-32. PubMed ID: 23314334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aquatic snails from mining sites have evolved to detect and avoid heavy metals.
    Lefcort H; Abbott DP; Cleary DA; Howell E; Keller NC; Smith MM
    Arch Environ Contam Toxicol; 2004 May; 46(4):478-84. PubMed ID: 15253045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heavy metal uptake by Euplotes mutabilis and its possible use in bioremediation of industrial wastewater.
    Rehman A; Shakoori FR; Shakoori AR
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):130-5. PubMed ID: 19387521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.
    Alhasawi A; Costanzi J; Auger C; Appanna ND; Appanna VD
    J Biotechnol; 2015 Apr; 200():38-43. PubMed ID: 25724118
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Naphthalene uptake by a Pseudomonas fluorescens isolate.
    Whitman BE; Lueking DR; Mihelcic JR
    Can J Microbiol; 1998 Nov; 44(11):1086-93. PubMed ID: 10030003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of cold stress on the proteome of the marine bacterium Pseudomonas fluorescens BA3SM1 and its ability to cope with metal excess.
    Poirier I; Kuhn L; Caplat C; Hammann P; Bertrand M
    Aquat Toxicol; 2014 Dec; 157():120-33. PubMed ID: 25456226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions.
    Deveau A; Gross H; Palin B; Mehnaz S; Schnepf M; Leblond P; Dorrestein PC; Aigle B
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27199346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure.
    Morales DK; Ocampo W; Zambrano MM
    J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies.
    Doshi H; Ray A; Kothari IL
    Biotechnol Bioeng; 2007 Apr; 96(6):1051-63. PubMed ID: 17041959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7.
    Zahoor M; Irshad M; Rahman H; Qasim M; Afridi SG; Qadir M; Hussain A
    Ecotoxicol Environ Saf; 2017 Aug; 142():139-149. PubMed ID: 28407499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential of novel Dunaliella salina from sambhar salt lake, India, for bioremediation of hexavalent chromium from aqueous effluents: An optimized green approach.
    Vidyalaxmi ; Kaushik G; Raza K
    Ecotoxicol Environ Saf; 2019 Sep; 180():430-438. PubMed ID: 31112842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
    Chatterjee SK; Bhattacharjee I; Chandra G
    J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improvement in fluoride remediation technology using GIS based mapping of fluoride contaminated groundwater and microbe assisted phytoremediation.
    Chaudhary K; Saraswat PK; Khan S
    Ecotoxicol Environ Saf; 2019 Jan; 168():164-176. PubMed ID: 30388533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Treatment of fluoroacetate by a Pseudomonas fluorescens bioflm grown in membrane aerated biofilm reactor.
    Heffernan B; Murphy CD; Syron E; Casey E
    Environ Sci Technol; 2009 Sep; 43(17):6776-85. PubMed ID: 19764249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of heavy metals on inhibitory concentration of Escherichia coli-a case study of river Yamuna system, Delhi, India.
    Bhardwaj R; Gupta A; Garg JK
    Environ Monit Assess; 2018 Oct; 190(11):674. PubMed ID: 30361786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation of high concentration phenol containing heavy metal ions by functional biofilm in bioelectro-reactor.
    Li XG; Wang T; Sun JS; Huang X; Kong XS
    J Environ Sci (China); 2006; 18(4):639-43. PubMed ID: 17078538
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.
    Li F; Guo S; Hartog N; Yuan Y; Yang X
    Biodegradation; 2016 Feb; 27(1):1-13. PubMed ID: 26615425
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cd-Resistant Strains of B. cereus S5 with Endurance Capacity and Their Capacities for Cadmium Removal from Cadmium-Polluted Water.
    Wu H; Wu Q; Wu G; Gu Q; Wei L
    PLoS One; 2016; 11(4):e0151479. PubMed ID: 27077388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges.
    Suthar S; Nema AK; Chabukdhara M; Gupta SK
    J Hazard Mater; 2009 Nov; 171(1-3):1088-95. PubMed ID: 19616893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.