These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16780122)

  • 21. Measurement and characterization of micronuclei in exfoliated human cells by fluorescence in situ hybridization with a centromeric probe.
    Titenko-Holland N; Moore LE; Smith MT
    Mutat Res; 1994 Feb; 312(1):39-50. PubMed ID: 7507215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential fluorescent staining method for detection of bacteria in blood cultures, cerebrospinal fluid and other clinical specimens.
    Fazii P; Ciancaglini E; Riario Sforza G
    Eur J Clin Microbiol Infect Dis; 2002 May; 21(5):373-8. PubMed ID: 12072922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TO-PRO-3 is an optimal fluorescent dye for nuclear counterstaining in dual-colour FISH on paraffin sections.
    Bink K; Walch A; Feuchtinger A; Eisenmann H; Hutzler P; Höfler H; Werner M
    Histochem Cell Biol; 2001 Apr; 115(4):293-9. PubMed ID: 11405057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescent staining of bacteria: viability and antibody labeling.
    Moyes RB
    Curr Protoc Microbiol; 2009 Nov; Appendix 3():Appendix 3K. PubMed ID: 19885938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of fluorescence in situ hybridization (RNA-FISH) on human paraffin sections by propidium iodide counterstaining.
    Wulf M; Bosse A; Voss B; Müller KM
    Biotechniques; 1995 Sep; 19(3):368-70, 372. PubMed ID: 7495547
    [No Abstract]   [Full Text] [Related]  

  • 26. Flow cytometric analysis of fluorescence in situ hybridization with dye dilution and DNA staining (flow-FISH-DDD) to determine telomere length dynamics in proliferating cells.
    Potter AJ; Wener MH
    Cytometry A; 2005 Nov; 68(1):53-8. PubMed ID: 16163702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation.
    Kobabe S; Wagner D; Pfeiffer EM
    FEMS Microbiol Ecol; 2004 Oct; 50(1):13-23. PubMed ID: 19712373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytogenetic analysis of Liza ramada (Pisces, Perciformes) by different staining techniques and fluorescent in situ hybridization.
    Rossi AR; Gornung E; Crosetti D
    Heredity (Edinb); 1997 Jul; 79 ( Pt 1)():83-7. PubMed ID: 9253614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved detection and comparative sizing of human chromosomal telomeres in situ.
    Krejcí K; Koch J
    Chromosoma; 1998 Jun; 107(3):198-203. PubMed ID: 9639658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective recognition of bacterial membranes by zinc(II)-coordination complexes.
    Leevy WM; Johnson JR; Lakshmi C; Morris J; Marquez M; Smith BD
    Chem Commun (Camb); 2006 Apr; (15):1595-7. PubMed ID: 16582990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A disintegration method for direct counting of bacteria in clay-dominated sediments: dissolving silicates and subsequent fluorescent staining of bacteria.
    Boenigk J
    J Microbiol Methods; 2004 Feb; 56(2):151-9. PubMed ID: 14744444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FISH and immunofluorescence staining in Chlamydomonas.
    Uniacke J; Colón-Ramos D; Zerges W
    Methods Mol Biol; 2011; 714():15-29. PubMed ID: 21431732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined fluorescent in situ hybridization and immunofluorescence: limiting factors and a substitution strategy for slide-mounted tissue sections.
    Nehmé B; Henry M; Mouginot D
    J Neurosci Methods; 2011 Mar; 196(2):281-8. PubMed ID: 21276820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probe labeling and fluorescence in situ hybridization.
    Wiegant J; Raap AK
    Curr Protoc Cytom; 2001 May; Chapter 8():Unit 8.3. PubMed ID: 18770741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A self-quenching-resistant carbon nanodot powder with multicolored solid-state fluorescence for ultra-fast staining of various representative bacterial species within one minute.
    Zhang Y; Li C; Fan Y; Wang C; Yang R; Liu X; Zhou L
    Nanoscale; 2016 Dec; 8(47):19744-19753. PubMed ID: 27874136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliable detection of dead microbial cells by using fluorescent hydrazides.
    Saint-Ruf C; Cordier C; Mégret J; Matic I
    Appl Environ Microbiol; 2010 Mar; 76(5):1674-8. PubMed ID: 20038683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FISH and Calcofluor staining techniques to detect in situ filamentous fungal biofilms in water.
    Gonçalves AB; Santos IM; Paterson RR; Lima N
    Rev Iberoam Micol; 2006 Sep; 23(3):194-8. PubMed ID: 17196030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of receptor tyrosine kinase gene amplification on the example of FGFR1.
    Boehm D; von Mässenhausen A; Perner S
    Methods Mol Biol; 2015; 1233():67-79. PubMed ID: 25319890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of a direct fluorescence-based live/dead staining combined with fluorescence in situ hybridization for assessment of survival rate of Bacteroides spp. in drinking water.
    Savichtcheva O; Okayama N; Ito T; Okabe S
    Biotechnol Bioeng; 2005 Nov; 92(3):356-63. PubMed ID: 16028294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.