BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16780905)

  • 1. Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray.
    da Costa BM; Keasling JD; McMahan CM; Cornish K
    Phytochemistry; 2006 Aug; 67(15):1621-8. PubMed ID: 16780905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro.
    Kim IJ; Ryu SB; Kwak YS; Kang H
    J Exp Bot; 2004 Feb; 55(396):377-85. PubMed ID: 14718497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of rubber biosynthetic rate and molecular weight in Hevea brasiliensis by metal cofactor.
    da Costa BM; Keasling JD; Cornish K
    Biomacromolecules; 2005; 6(1):279-89. PubMed ID: 15638531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray).
    Madhavan S; Benedict CR
    Plant Physiol; 1984 Aug; 75(4):908-13. PubMed ID: 16663758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species.
    Xie W; McMahan CM; Degraw AJ; Distefano MD; Cornish K; Whalen MC; Shintani DK
    Phytochemistry; 2008 Oct; 69(14):2539-45. PubMed ID: 18799172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue.
    Ponciano G; McMahan CM; Xie W; Lazo GR; Coffelt TA; Collins-Silva J; Nural-Taban A; Gollery M; Shintani DK; Whalen MC
    Phytochemistry; 2012 Jul; 79():57-66. PubMed ID: 22608127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates.
    Scott DJ; da Costa BM; Espy SC; Keasling JD; Cornish K
    Phytochemistry; 2003 Sep; 64(1):123-34. PubMed ID: 12946411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of rubber biosynthesis in guayule (Parthenium argentatum gray).
    Stonebloom SH; Scheller HV
    BMC Plant Biol; 2019 Feb; 19(1):71. PubMed ID: 30755179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiator-independent and initiator-dependent rubber biosynthesis in Ficus elastica.
    Espy SC; Keasling JD; Castillón J; Cornish K
    Arch Biochem Biophys; 2006 Apr; 448(1-2):13-22. PubMed ID: 16488387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Enzymatic Synthesis of Rubber Polymer in Parthenium argentatum Gray.
    Benedict CR; Madhavan S; Greenblatt GA; Venkatachalam KV; Foster MA
    Plant Physiol; 1990 Mar; 92(3):816-21. PubMed ID: 16667354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species.
    Cornish K; Scott DJ; Xie W; Mau CJD; Zheng YF; Liu XH; Prestwich GD
    Phytochemistry; 2018 Dec; 156():55-72. PubMed ID: 30195165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of deuterium-labelled analogs of isopentenyl diphosphate for the elucidation of the stereochemistry of rubber biosynthesis.
    Scholte AA; Vederas JC
    Org Biomol Chem; 2006 Feb; 4(4):730-42. PubMed ID: 16467948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects.
    Cherian S; Ryu SB; Cornish K
    Plant Biotechnol J; 2019 Nov; 17(11):2041-2061. PubMed ID: 31150158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree.
    Kang H; Kang MY; Han KH
    Plant Physiol; 2000 Jul; 123(3):1133-42. PubMed ID: 10889262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarities and differences in rubber biochemistry among plant species.
    Cornish K
    Phytochemistry; 2001 Aug; 57(7):1123-34. PubMed ID: 11430985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Studies of the Protein Complexes Involving
    Lakusta AM; Kwon M; Kwon EG; Stonebloom S; Scheller HV; Ro DK
    Front Plant Sci; 2019; 10():165. PubMed ID: 30858856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein farnesyltransferase inhibitors interfere with farnesyl diphosphate binding by rubber transferase.
    Mau CJ; Garneau S; Scholte AA; Van Fleet JE; Vederas JC; Cornish K
    Eur J Biochem; 2003 Oct; 270(19):3939-45. PubMed ID: 14511375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles.
    Rojruthai P; Sakdapipanich JT; Takahashi S; Hyegin L; Noike M; Koyama T; Tanaka Y
    J Biosci Bioeng; 2010 Feb; 109(2):107-14. PubMed ID: 20129092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubber molecular weight regulation, in vitro, in plant species that produce high and low molecular weights in vivo.
    Cornish K; Castillón J; Scott DJ
    Biomacromolecules; 2000; 1(4):632-41. PubMed ID: 11710193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal Variations in Rubber Biosynthesis, 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase, and Rubber Transferase Activities in Parthenium argentatum in the Chihuahuan Desert.
    Ji W; Benedict CR; Foster MA
    Plant Physiol; 1993 Oct; 103(2):535-542. PubMed ID: 12231959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.