These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16781051)

  • 1. Ligand effects on protein thermodynamic stability.
    Sanchez-Ruiz JM
    Biophys Chem; 2007 Mar; 126(1-3):43-9. PubMed ID: 16781051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy.
    West GM; Tang L; Fitzgerald MC
    Anal Chem; 2008 Jun; 80(11):4175-85. PubMed ID: 18457414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding energetics of ligand binding proteins. I. Theoretical model.
    Rösgen J; Hinz HJ
    J Mol Biol; 2001 Mar; 306(4):809-24. PubMed ID: 11243790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H/D exchange- and mass spectrometry-based strategy for the thermodynamic analysis of protein-ligand binding.
    Tang L; Hopper ED; Tong Y; Sadowsky JD; Peterson KJ; Gellman SH; Fitzgerald MC
    Anal Chem; 2007 Aug; 79(15):5869-77. PubMed ID: 17580981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of effects of macromolecular crowding and confinement on protein folding and protein stability.
    Ping G; Yuan JM; Sun Z; Wei Y
    J Mol Recognit; 2004; 17(5):433-40. PubMed ID: 15362102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rescuing proteins of low kinetic stability by chaperones and natural ligands phenylketonuria, a case study.
    Martinez A; Calvo AC; Teigen K; Pey AL
    Prog Mol Biol Transl Sci; 2008; 83():89-134. PubMed ID: 19186253
    [No Abstract]   [Full Text] [Related]  

  • 8. Engineering proteins with tunable thermodynamic and kinetic stabilities.
    Pey AL; Rodriguez-Larrea D; Bomke S; Dammers S; Godoy-Ruiz R; Garcia-Mira MM; Sanchez-Ruiz JM
    Proteins; 2008 Apr; 71(1):165-74. PubMed ID: 17932922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand effects on the protein ensemble: unifying the descriptions of ligand binding, local conformational fluctuations, and protein stability.
    Whitten ST; García-Moreno BE; Hilser VJ
    Methods Cell Biol; 2008; 84():871-91. PubMed ID: 17964952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies of unfolding and binding of ligands to human serum albumin in the presence of fatty acid: spectroscopic approach.
    Varshney A; Ahmad B; Khan RH
    Int J Biol Macromol; 2008 Jun; 42(5):483-90. PubMed ID: 18452986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple energy landscape model for the kinetics of functional transitions in proteins.
    Miyashita O; Wolynes PG; Onuchic JN
    J Phys Chem B; 2005 Feb; 109(5):1959-69. PubMed ID: 16851180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the molecular determinants of ligand-binding-induced macromolecular switching using thermodynamic cycles.
    Smith MT; Mackenzie DW; Meiering EM
    Protein Eng Des Sel; 2011 Jan; 24(1-2):213-7. PubMed ID: 21084282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of proteins in the presence of carbohydrates; experiments and modeling using scaled particle theory.
    O'Connor TF; Debenedetti PG; Carbeck JD
    Biophys Chem; 2007 Apr; 127(1-2):51-63. PubMed ID: 17234323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic linkage of large-scale ligand aggregation with receptor binding.
    Maluf NK; Yang TC
    Biophys Chem; 2011 Mar; 154(2-3):82-9. PubMed ID: 21334131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping transient partial unfolding by protein engineering and native-state proteolysis.
    Chang Y; Park C
    J Mol Biol; 2009 Oct; 393(2):543-56. PubMed ID: 19683000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design.
    Olsson TS; Williams MA; Pitt WR; Ladbury JE
    J Mol Biol; 2008 Dec; 384(4):1002-17. PubMed ID: 18930735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding energetics and conformational stability of DLC8 monomer.
    Krishna Mohan PM
    Biochimie; 2007 Nov; 89(11):1409-15. PubMed ID: 17664039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting absorbance at 230nm as a protein unfolding probe.
    Liu PF; Avramova LV; Park C
    Anal Biochem; 2009 Jun; 389(2):165-70. PubMed ID: 19318083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic analysis of protein unfolding in aqueous solutions as a multisite reaction of protein with water and solute molecules.
    Miyawaki O
    Biophys Chem; 2009 Sep; 144(1-2):46-52. PubMed ID: 19573978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.