BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16781194)

  • 1. Identification of Salicylates in Willow Bark (
    Antoniadou K; Herz C; Le NPK; Mittermeier-Kleßinger VK; Förster N; Zander M; Ulrichs C; Mewis I; Hofmann T; Dawid C; Lamy E
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681798
    [No Abstract]   [Full Text] [Related]  

  • 2. From plant extract to molecular panacea: a commentary on Stone (1763) 'An account of the success of the bark of the willow in the cure of the agues'.
    Wood JN
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1666):. PubMed ID: 25750237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The willow as a Hottentot (Khoikhoi) remedy for rheumatic fever.
    Volmink J
    J R Soc Med; 2008 Jun; 101(6):321-3. PubMed ID: 18515781
    [No Abstract]   [Full Text] [Related]  

  • 4. Resolution of inflammation: examples of peptidergic players and pathways.
    Ahmed TJ; Kaneva MK; Pitzalis C; Cooper D; Perretti M
    Drug Discov Today; 2014 Aug; 19(8):1166-71. PubMed ID: 24880108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines.
    Wu Z; Zhang T; Ma X; Guo S; Zhou Q; Zahoor A; Deng G
    Inflammopharmacology; 2023 Dec; 31(6):2901-2937. PubMed ID: 37947913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review.
    Biji CA; Balde A; Nazeer RA
    Inflamm Res; 2024 Jul; 73(7):1203-1221. PubMed ID: 38769154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxycholic Acid and Lithocholic Acid Alleviate Liver Injury and Inflammation in Mice with
    Zheng Y; Yue C; Zhang H; Chen H; Liu Y; Li J
    J Inflamm Res; 2021; 14():777-789. PubMed ID: 33727851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The G-Protein-Coupled Bile Acid Receptor Gpbar1 (TGR5) Inhibits Gastric Inflammation Through Antagonizing NF-κB Signaling Pathway.
    Guo C; Qi H; Yu Y; Zhang Q; Su J; Yu D; Huang W; Chen WD; Wang YD
    Front Pharmacol; 2015; 6():287. PubMed ID: 26696888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products.
    Chen Y; Huang XJ; Yu N; Xie Y; Zhang K; Wen F; Liu H; Di Q
    PLoS One; 2015; 10(10):e0140918. PubMed ID: 26485677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice.
    Wang YD; Chen WD; Yu D; Forman BM; Huang W
    Hepatology; 2011 Oct; 54(4):1421-32. PubMed ID: 21735468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases.
    Beck IM; Vanden Berghe W; Vermeulen L; Yamamoto KR; Haegeman G; De Bosscher K
    Endocr Rev; 2009 Dec; 30(7):830-82. PubMed ID: 19890091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of N-(quinolin-8-yl)benzenesulfonamides as agents capable of down-regulating NFkappaB activity within two separate high-throughput screens of NFkappaB activation.
    Xie Y; Deng S; Thomas CJ; Liu Y; Zhang YQ; Rinderspacher A; Huang W; Gong G; Wyler M; Cayanis E; Aulner N; Többen U; Chung C; Pampou S; Southall N; Vidović D; Schürer S; Branden L; Davis RE; Staudt LM; Inglese J; Austin CP; Landry DW; Smith DH; Auld DS
    Bioorg Med Chem Lett; 2008 Jan; 18(1):329-35. PubMed ID: 18024113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The threat of avian influenza A (H5N1). Part III: Antiviral therapy.
    Cinatl J; Michaelis M; Doerr HW
    Med Microbiol Immunol; 2007 Dec; 196(4):203-12. PubMed ID: 17431677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From willow bark to peptides: the ever widening spectrum of NF-kappaB inhibitors.
    D'Acquisto F; Ianaro A
    Curr Opin Pharmacol; 2006 Aug; 6(4):387-92. PubMed ID: 16781194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of short-term, low dose aspirin supplementation on the activation of pro-inflammatory NF-kappaB in aged rats.
    Jung KJ; Kim JY; Zou Y; Kim YJ; Yu BP; Chung HY
    Mech Ageing Dev; 2006 Mar; 127(3):223-30. PubMed ID: 16310244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allose gallates suppress expression of pro-inflammatory cytokines through attenuation of NF-kappaB in human mast cells.
    Lee SH; Park HH; Kim JE; Kim JA; Kim YH; Jun CD; Kim SH
    Planta Med; 2007 Jul; 73(8):769-73. PubMed ID: 17599281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-inflammatory effects of the willow bark extract STW 33-I (Proaktiv(®)) in LPS-activated human monocytes and differentiated macrophages.
    Bonaterra GA; Heinrich EU; Kelber O; Weiser D; Metz J; Kinscherf R
    Phytomedicine; 2010 Dec; 17(14):1106-13. PubMed ID: 20570123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NF-kappaB, inflammation and pancreatic carcinogenesis: NF-kappaB as a chemoprevention target (review).
    Zhang Z; Rigas B
    Int J Oncol; 2006 Jul; 29(1):185-92. PubMed ID: 16773199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential.
    Wong ET; Tergaonkar V
    Clin Sci (Lond); 2009 Mar; 116(6):451-65. PubMed ID: 19200055
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.