These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 167814)

  • 1. Synthesis of a new phosphatidylserine spin-label and calcium-induced lateral phase separation in phosphatidylserine-phosphatidylcholine membranes.
    Iot T; Ohnish S; Ishinaga M; Kito M
    Biochemistry; 1975 Jul; 14(14):3064-9. PubMed ID: 167814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the calcium-induced gel phase on the behavior of small molecules in phosphatidylserine and phosphatidylserine-phosphatidylcholine multilamellar vesicles.
    Florine KI; Feigenson GW
    Biochemistry; 1987 Mar; 26(6):1757-68. PubMed ID: 3036210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-induced phase separation in phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine mixed membranes.
    Tokutomi S; Lew R; Ohnishi S
    Biochim Biophys Acta; 1981 May; 643(2):276-82. PubMed ID: 6261813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes.
    Ito T; Onishi S
    Biochim Biophys Acta; 1974 May; 352(1):29-37. PubMed ID: 4368475
    [No Abstract]   [Full Text] [Related]  

  • 5. Disappearance of calcium-induced phase separation in phosphatidylserine-phosphatidylcholine membranes caused by protonation and by electric current.
    Tokutomi S; Eguchi G; Ohnishi SI
    Biochim Biophys Acta; 1979 Mar; 552(1):78-88. PubMed ID: 219893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-induced phase separation in phosphatidylserine/phosphatidylcholine membranes.
    Tokutomi S; Ohki K; Ohnishi SI
    Biochim Biophys Acta; 1980 Feb; 596(2):192-200. PubMed ID: 6243978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling.
    Rufener E; Frazier AA; Wieser CM; Hinderliter A; Cafiso DS
    Biochemistry; 2005 Jan; 44(1):18-28. PubMed ID: 15628842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study.
    Galla HJ; Sackmann E
    Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium ion binding between lipid bilayers: the four-component system of phosphatidylserine, phosphatidylcholine, calcium chloride, and water.
    Feigenson GW
    Biochemistry; 1989 Feb; 28(3):1270-8. PubMed ID: 2540823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of annexin IV and VI on the fluidity of phosphatidylserine/phosphatidylcholine bilayers studied with the use of 5-deoxylstearate spin label.
    Sobota A; Bandorowicz J; Jezierski A; Sikorski AF
    FEBS Lett; 1993 Jan; 315(2):178-82. PubMed ID: 8417975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid asymmetry and transmembrane diffusion in photoreceptor disc membranes.
    Wu G; Hubbell WL
    Biochemistry; 1993 Jan; 32(3):879-88. PubMed ID: 8380712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of a Ca-2+-triggered membrane aggregation reaction of phospholipid membranes.
    Lansman J; Haynes DH
    Biochim Biophys Acta; 1975 Jul; 394(3):335-47. PubMed ID: 1131369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties of phosphatidylcholine-phosphatidylinositol liposomes in relation to a calcium effect.
    Ohki K; Sekiya T; Yamauchi T; Nozawa Y
    Biochim Biophys Acta; 1981 Jun; 644(2):165-74. PubMed ID: 6266466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein redistribution in model membranes: clearing of M13 coat protein from calcium-induced gel-phase regions in phosphatidylserine/phosphatidylcholine multilamellar vesicles.
    Florine KI; Feigenson GW
    Biochemistry; 1987 Jun; 26(11):2978-83. PubMed ID: 3607003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium- and magnesium-induced fusion of mixed phosphatidylserine/phosphatidylcholine vesicles: effect of ion binding.
    Düzgünes N; Nir S; Wilschut J; Bentz J; Newton C; Portis A; Papahadjopoulos D
    J Membr Biol; 1981 Apr; 59(2):115-25. PubMed ID: 7241577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of lipid chain attached fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) in negatively charged membranes determined by NMR spectroscopy.
    Huster D; Müller P; Arnold K; Herrmann A
    Eur Biophys J; 2003 Mar; 32(1):47-54. PubMed ID: 12632206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D; Arnold K; Gawrisch K
    Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-induced lipid phase separations and interactions of phosphatidylcholine/anionic phospholipid vesicles. Fluorescence studies using carbazole-labeled and brominated phospholipids.
    Silvius JR
    Biochemistry; 1990 Mar; 29(12):2930-8. PubMed ID: 2337575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase separations in phospholipd membranes.
    Hong-wei S; McConnell H
    Biochemistry; 1975 Feb; 14(4):847-54. PubMed ID: 163646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of inorganic mercury with phospholipid micelles and model membranes. A 31P-NMR study.
    Girault L; Lemaire P; Boudou A; Debouzy JC; Dufourc EJ
    Eur Biophys J; 1996; 24(6):413-21. PubMed ID: 8765713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.