These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16781752)

  • 1. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation.
    Jenderka KV; Koch C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial study on a multibubble system for sonochemistry by laser-light scattering.
    Tuziuti T; Yasui K; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.
    Hodnett M; Choi MJ; Zeqiri B
    Ultrason Sonochem; 2007 Jan; 14(1):29-40. PubMed ID: 16549381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the receiving range of sound field measurements in cavitating media.
    Koch C; Jenderka KV
    Ultrason Sonochem; 2008 Jul; 15(5):846-52. PubMed ID: 18065253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation.
    Sokka SD; Gauthier TP; Hynynen K
    Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes.
    Muthukumaran S; Kentish S; Lalchandani S; Ashokkumar M; Mawson R; Stevens GW; Grieser F
    Ultrason Sonochem; 2005 Jan; 12(1-2):29-35. PubMed ID: 15474949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels.
    Zeqiri B; Hodnett M; Carroll AJ
    Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations of water cavitation intensity under practical ultrasonic cleaning conditions.
    Niemczewski B
    Ultrason Sonochem; 2007 Jan; 14(1):13-8. PubMed ID: 16455284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM
    Ultrason Sonochem; 2010 Jun; 17(5):863-9. PubMed ID: 20236851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model processes and cavitation indicators for a quantitative description of an ultrasonic cleaning vessel: Part I: experimental results.
    Jüschke M; Koch C
    Ultrason Sonochem; 2012 Jul; 19(4):787-95. PubMed ID: 22261472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for comparing the efficiency of ultrasound irradiation independent of the shape and the volume of the reaction vessel in sonochemical experiments.
    Gáplovský A; Gáplovský M; Kimura T; Toma S; Donovalova J; Vencel T
    Ultrason Sonochem; 2007 Sep; 14(6):695-8. PubMed ID: 17188015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of sound field in a tissue medium generated by a concave spherically annular transducer.
    Qian S; Kamakura T; Akiyama M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e271-4. PubMed ID: 16843509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of interaction between therapeutic ultrasound propagation and cavitation bubbles.
    Liebler M; Dreyer T; Riedlinger RE
    Ultrasonics; 2006 Dec; 44 Suppl 1():e319-24. PubMed ID: 16908041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of cavitation fields at 23 and 515 kHz.
    Price GJ; Harris NK; Stewart AJ
    Ultrason Sonochem; 2010 Jan; 17(1):30-3. PubMed ID: 19464940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system.
    Farny CH; Holt RG; Roy RA
    Ultrasound Med Biol; 2009 Apr; 35(4):603-15. PubMed ID: 19110368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved monitoring of cavitation activity in megasonic cleaning systems.
    Hauptmann M; Brems S; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C
    Rev Sci Instrum; 2012 Mar; 83(3):034904. PubMed ID: 22462949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food drying process by power ultrasound.
    de la Fuente-Blanco S; Riera-Franco de Sarabia E; Acosta-Aparicio VM; Blanco-Blanco A; Gallego-Juárez JA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e523-7. PubMed ID: 16814827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.