These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16781762)

  • 1. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids.
    Liu Y; Chen Y; Zhou Q
    Chemosphere; 2007 Jan; 66(1):123-9. PubMed ID: 16781762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The long-term effect of initial pH control on the enrichment culture of phosphorus- and glycogen-accumulating organisms with a mixture of propionic and acetic acids as carbon sources.
    Zhang C; Chen Y; Liu Y
    Chemosphere; 2007 Nov; 69(11):1713-21. PubMed ID: 17662338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH on enhanced biological phosphorus removal metabolisms.
    Schuler AJ; Jenkins D
    Water Sci Technol; 2002; 46(4-5):171-8. PubMed ID: 12361006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhydroxyalkanoate form and polyphosphate regulation: keys to biological phosphorus and glycogen transformations?
    Randall AA; Chen Y; Liu YH; McCue T
    Water Sci Technol; 2003; 47(11):227-33. PubMed ID: 12906294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants.
    Saunders AM; Oehmen A; Blackall LL; Yuan Z; Keller J
    Water Sci Technol; 2003; 47(11):37-43. PubMed ID: 12906269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of wastewater initial pH on enhanced biological phosphorus removal in sequencing batch reactor (SBR)].
    Zheng H; Chen YG; Yang DH; Liu Y; Gu GW
    Huan Jing Ke Xue; 2007 Mar; 28(3):512-6. PubMed ID: 17633625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of initial pH control on biological phosphorus removal induced by the aerobic/extended-idle regime.
    Wang D; Zheng W; Liao D; Li X; Yang Q; Zeng G
    Chemosphere; 2013 Feb; 90(8):2279-87. PubMed ID: 23186888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance.
    Erdal UG; Erdal ZK; Randall CW
    Water Sci Technol; 2003; 47(11):1-8. PubMed ID: 12906264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The characteristics of phosphorus removal in an anaerobic/aerobic sequential batch biofilter reactor.
    Chiou RJ; Ouyang CF; Lin KH; Chuang SH
    Water Sci Technol; 2001; 44(1):57-65. PubMed ID: 11496678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater.
    Bengtsson S; Werker A; Welander T
    Water Sci Technol; 2008; 58(2):323-30. PubMed ID: 18701781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal.
    Coats ER; Mockos A; Loge FJ
    Bioresour Technol; 2011 Jan; 102(2):1019-27. PubMed ID: 20970328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms.
    Oehmen A; Teresa Vives M; Lu H; Yuan Z; Keller J
    Water Res; 2005 Sep; 39(15):3727-37. PubMed ID: 16098556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of methanogenic digestion applied to a low pH acetic acid solution.
    Taconi KA; Zappi ME; Todd French W; Brown LR
    Bioresour Technol; 2007 May; 98(8):1579-85. PubMed ID: 16996264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources.
    Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J
    J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms.
    Oehmen A; Yuan Z; Blackall LL; Keller J
    Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid.
    Chen Y; Randall AA; McCue T
    Water Res; 2004 Jan; 38(1):27-36. PubMed ID: 14630100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs).
    Carvalheira M; Oehmen A; Carvalho G; Reis MAM
    Water Res; 2014 Nov; 64():149-159. PubMed ID: 25051162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the aerobic metabolism of polyphosphate-accumulating organisms enriched with propionate as a carbon source.
    Oehmen A; Zeng RJ; Keller J; Yuan Z
    Water Environ Res; 2007 Dec; 79(13):2477-86. PubMed ID: 18198693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.