BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16781764)

  • 1. Mercury release from deforested soils triggered by base cation enrichment.
    Farella N; Lucotte M; Davidson R; Daigle S
    Sci Total Environ; 2006 Sep; 368(1):19-29. PubMed ID: 16781764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon.
    Béliveau A; Lucotte M; Davidson R; Lopes LO; Paquet S
    Sci Total Environ; 2009 Jul; 407(15):4480-9. PubMed ID: 19428050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador.
    Mainville N; Webb J; Lucotte M; Davidson R; Betancourt O; Cueva E; Mergler D
    Sci Total Environ; 2006 Sep; 368(1):88-98. PubMed ID: 16499953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon.
    Patry C; Davidson R; Lucotte M; Béliveau A
    Sci Total Environ; 2013 Aug; 458-460():228-37. PubMed ID: 23651778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil.
    Almeida MD; Lacerda LD; Bastos WR; Herrmann JC
    Environ Pollut; 2005 Sep; 137(2):179-86. PubMed ID: 15885862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon.
    Lacerda LD; de Souza M; Ribeiro MG
    Environ Pollut; 2004 May; 129(2):247-55. PubMed ID: 14987810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deforestation and cultivation mobilize mercury from topsoil.
    Gamby RL; Hammerschmidt CR; Costello DM; Lamborg CH; Runkle JR
    Sci Total Environ; 2015 Nov; 532():467-73. PubMed ID: 26100725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Land-use versus natural controls on soil fertility in the Subandean Amazon, Peru.
    Lindell L; Aström M; Oberg T
    Sci Total Environ; 2010 Jan; 408(4):965-75. PubMed ID: 19906408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon.
    Béliveau A; Lucotte M; Davidson R; Paquet S; Mertens F; Passos CJ; Romana CA
    J Environ Manage; 2017 Dec; 203(Pt 1):522-532. PubMed ID: 28841519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China.
    Xiao T; Guha J; Boyle D; Liu CQ; Chen J
    Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed.
    Markewitz D; Davidson EA; Figueiredo Rd ; Victoria RL; Krusche AV
    Nature; 2001 Apr; 410(6830):802-5. PubMed ID: 11298445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-soil exchange of mercury from background soils in the United States.
    Ericksen JA; Gustin MS; Xin M; Weisberg PJ; Fernandez GC
    Sci Total Environ; 2006 Aug; 366(2-3):851-63. PubMed ID: 16181661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury storage in surface soils in a central Washington forest and estimated release during the 2001 Rex Creek Fire.
    Biswas A; Blum JD; Keeler GJ
    Sci Total Environ; 2008 Oct; 404(1):129-38. PubMed ID: 18640702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire.
    Engle MA; Sexauer Gustin M; Johnson DW; Murphy JF; Miller WW; Walker RF; Wright J; Markee M
    Sci Total Environ; 2006 Aug; 367(1):222-33. PubMed ID: 16406491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments.
    Aquilina L; Poszwa A; Walter C; Vergnaud V; Pierson-Wickmann AC; Ruiz L
    Environ Sci Technol; 2012 Sep; 46(17):9447-55. PubMed ID: 22839503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of exchangeable cations in the environment of soils at Kampinoski National Park.
    Czepinska-Kaminska D; Konecka-Betley K; Janowska E
    Chemosphere; 2003 Jul; 52(3):581-4. PubMed ID: 12738295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region.
    de Paz JM; Sánchez J; Visconti F
    J Environ Manage; 2006 Apr; 79(2):150-62. PubMed ID: 16171939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence.
    Telmer K; Costa M; Simões Angélica R; Araujo ES; Maurice Y
    J Environ Manage; 2006 Oct; 81(2):101-13. PubMed ID: 16824670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil microbiome responses to the short-term effects of Amazonian deforestation.
    Navarrete AA; Tsai SM; Mendes LW; Faust K; de Hollander M; Cassman NA; Raes J; van Veen JA; Kuramae EE
    Mol Ecol; 2015 May; 24(10):2433-48. PubMed ID: 25809788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.