BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 16781814)

  • 21. In vitro degradation of natural insoluble lignin in aqueous media by the extracellular peroxidases of Phanerochaete chrysosporium.
    Thompson DN; Hames BR; Reddy CA; Grethlein HE
    Biotechnol Bioeng; 1998 Mar; 57(6):704-17. PubMed ID: 10099250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis.
    Timofeevski SL; Nie G; Reading NS; Aust SD
    Biochem Biophys Res Commun; 1999 Mar; 256(3):500-4. PubMed ID: 10080927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of ferrocytochrome c by lignin peroxidase.
    Wariishi H; Sheng D; Gold MH
    Biochemistry; 1994 May; 33(18):5545-52. PubMed ID: 8180177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation?
    Hildén L; Johansson G; Pettersson G; Li J; Ljungquist P; Henriksson G
    FEBS Lett; 2000 Jul; 477(1-2):79-83. PubMed ID: 10899314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of lignin peroxidase-mediated oxidation activity by ethylenediamine tetraacetic acid and N-N-N'-N'-tetramethylenediamine.
    Chang HC; Bumpus JA
    Proc Natl Sci Counc Repub China B; 2001 Jan; 25(1):26-33. PubMed ID: 11254169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium.
    Ferrara MA; Bon EP; Araujo Neto JS
    Appl Biochem Biotechnol; 2002; 98-100():289-300. PubMed ID: 12018256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Irreversible oxidation of ferricytochrome c by lignin peroxidase.
    Sheng D; Gold MH
    Biochemistry; 1998 Feb; 37(7):2029-36. PubMed ID: 9485329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new versatile peroxidase from Pleurotus.
    Ruiz-Dueñas FJ; Camarero S; Pérez-Boada M; Martínez MJ; Martínez AT
    Biochem Soc Trans; 2001 May; 29(Pt 2):116-22. PubMed ID: 11356138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.
    Kamitsuji H; Watanabe T; Honda Y; Kuwahara M
    Biochem J; 2005 Mar; 386(Pt 2):387-93. PubMed ID: 15461584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer.
    Min K; Gong G; Woo HM; Kim Y; Um Y
    Sci Rep; 2015 Feb; 5():8245. PubMed ID: 25650125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites.
    Camarero S; Sarkar S; Ruiz-Dueñas FJ; Martínez MJ; Martínez AT
    J Biol Chem; 1999 Apr; 274(15):10324-30. PubMed ID: 10187820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism.
    Miki Y; Pogni R; Acebes S; Lucas F; Fernández-Fueyo E; Baratto MC; Fernández MI; de los Ríos V; Ruiz-Dueñas FJ; Sinicropi A; Basosi R; Hammel KE; Guallar V; Martínez AT
    Biochem J; 2013 Jun; 452(3):575-84. PubMed ID: 23548202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligninolytic enzyme production by Phanerochaete chrysosporium immobilized on different carriers.
    Liang H; Gao DW; Zeng YG
    Bioprocess Biosyst Eng; 2012 Sep; 35(7):1179-84. PubMed ID: 22349929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation.
    Goodwin DC; Aust SD; Grover TA
    Biochemistry; 1995 Apr; 34(15):5060-5. PubMed ID: 7711026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols.
    Lund M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):699-703. PubMed ID: 11525617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.
    Baciocchi E; Fabbri C; Lanzalunga O
    J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium.
    Mester T; Tien M
    Biochem Biophys Res Commun; 2001 Jun; 284(3):723-8. PubMed ID: 11396962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium.
    Johjima T; Itoh N; Kabuto M; Tokimura F; Nakagawa T; Wariishi H; Tanaka H
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1989-94. PubMed ID: 10051582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic mechanisms and regulation of lignin peroxidase.
    Harvey PJ; Floris R; Lundell T; Palmer JM; Schoemaker HE; Wever R
    Biochem Soc Trans; 1992 May; 20(2):345-9. PubMed ID: 1397627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes.
    Singh D; Chen S
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):399-417. PubMed ID: 18810426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.