These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 16782203)
1. Dry beveling micropipettes using a computer hard drive. Canfield JG J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203 [TBL] [Abstract][Full Text] [Related]
2. Pressure polishing: a method for re-shaping patch pipettes during fire polishing. Goodman MB; Lockery SR J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361 [TBL] [Abstract][Full Text] [Related]
3. A multimicroelectrode system composed of independent glass micropipettes with an eccentric tip structure for simultaneous intracellular recording. Saburi M; Yamada M; Shigematsu Y IEEE Trans Biomed Eng; 1992 Jun; 39(6):656-8. PubMed ID: 1601448 [TBL] [Abstract][Full Text] [Related]
4. Making patch-pipettes and sharp electrodes with a programmable puller. Brown AL; Johnson BE; Goodman MB J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078940 [TBL] [Abstract][Full Text] [Related]
5. Pressure-polishing pipettes for improved patch-clamp recording. Johnson BE; Brown AL; Goodman MB J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936 [TBL] [Abstract][Full Text] [Related]
7. Technique for precision beveling of relatively large micropipettes. Brown KT; Flaming DG J Neurosci Methods; 1979 Mar; 1(1):25-34. PubMed ID: 544956 [TBL] [Abstract][Full Text] [Related]
8. High-resolution intracellular recordings using a real-time computational model of the electrode. Brette R; Piwkowska Z; Monier C; Rudolph-Lilith M; Fournier J; Levy M; Frégnac Y; Bal T; Destexhe A Neuron; 2008 Aug; 59(3):379-91. PubMed ID: 18701064 [TBL] [Abstract][Full Text] [Related]
9. A simple method for beveling micropipettes for intracellular recording and current injection. Tauchi M; Kikuchi R Pflugers Arch; 1977 Mar; 368(1-2):153-5. PubMed ID: 558588 [TBL] [Abstract][Full Text] [Related]
13. A reproducible technique for breaking glass micropipettes over a wide range of tip diameters. Briano RA J Neurosci Methods; 1983 Sep; 9(1):31-4. PubMed ID: 6632960 [TBL] [Abstract][Full Text] [Related]
14. [Intracellular dialysis with a microcatheter inserted into the patch-clamp pipette]. Li GH; Li ZW; Wang SD; Wei JB; Zheng XK Sheng Li Xue Bao; 2002 Apr; 54(2):179-82. PubMed ID: 11973602 [TBL] [Abstract][Full Text] [Related]
15. Flip-the-tip: automated patch clamping based on glass electrodes. Fejtl M; Czubayko U; Hümmer A; Krauter T; Lepple-Wienhues A Methods Mol Biol; 2007; 403():71-85. PubMed ID: 18827988 [TBL] [Abstract][Full Text] [Related]
16. The jet stream microbeveler: an inexpensive way to bevel ultrafine glass micropipettes. Ogden TE; Citron MC; Pierantoni R Science; 1978 Aug; 201(4354):469-70. PubMed ID: 663670 [TBL] [Abstract][Full Text] [Related]
17. A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes. Swadlow HA; Bereshpolova Y; Bezdudnaya T; Cano M; Stoelzel CR J Neurophysiol; 2005 May; 93(5):2959-65. PubMed ID: 15601730 [TBL] [Abstract][Full Text] [Related]
18. Modification of the David-Kopf puller (DKI 700 C) for the preparation of multi-barrel glass micropipettes. Tölle TR; Dabrowski H; Welzl H J Neurosci Methods; 1984 Apr; 10(4):277-80. PubMed ID: 6748739 [TBL] [Abstract][Full Text] [Related]