These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16782349)

  • 41. Mechanistic analysis of the phosphonate transition-state analogue-derived catalytic and non-catalytic antibody.
    Nishi Y; Yamamoto N; Shimazaki K; Takahashi-Ando N; Kakinuma H; Jialin S; Ruzheinikov SN; Muranova TA; Rice DW; Kajihara Y
    J Biochem; 2007 Oct; 142(4):421-33. PubMed ID: 17981825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toward the antibody-catalyzed chemiluminescence. Design and synthesis of hapten.
    Sawa M; Imaeda Y; Hiratake J; Fujii R; Umeshita R; Watanabe M; Kondo H; Oda J
    Bioorg Med Chem Lett; 1998 Mar; 8(6):647-52. PubMed ID: 9871576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes.
    Wagner J; Lerner RA; Barbas CF
    Science; 1995 Dec; 270(5243):1797-800. PubMed ID: 8525368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural basis for antibody catalysis of a cationic cyclization reaction.
    Zhu X; Heine A; Monnat F; Houk KN; Janda KD; Wilson IA
    J Mol Biol; 2003 May; 329(1):69-83. PubMed ID: 12742019
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic polyclonal antibodies.
    Stephens DB; Iverson BL
    Biochem Biophys Res Commun; 1993 May; 192(3):1439-44. PubMed ID: 8507208
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic mechanism of SGAP, a double-zinc aminopeptidase from Streptomyces griseus.
    Hershcovitz YF; Gilboa R; Reiland V; Shoham G; Shoham Y
    FEBS J; 2007 Aug; 274(15):3864-76. PubMed ID: 17608735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2008; 14(2):596-602. PubMed ID: 17960540
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide.
    Razkin J; Nilsson H; Baltzer L
    J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis.
    Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J
    J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of novel hapten derivatives of 1alpha,25-dihydroxy-vitamin D3 and its 20-epi analogue.
    Blaehr LK; Björkling F; Calverley MJ; Binderup E; Begtrup M
    J Org Chem; 2003 Feb; 68(4):1367-75. PubMed ID: 12585876
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding and catalysis: a thermodynamic study on a catalytic antibody system.
    Wade H; Scanlan TS
    Chembiochem; 2003 Jun; 4(6):537-40. PubMed ID: 12794866
    [No Abstract]   [Full Text] [Related]  

  • 53. Cationic cyclopropanation by antibody catalysis.
    Li T; Janda KD; Lerner RA
    Nature; 1996 Jan; 379(6563):326-7. PubMed ID: 8552185
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 15N nuclear magnetic resonance studies of acid-base properties of pyridoxal-5'-phosphate aldimines in aqueous solution.
    Sharif S; Huot MC; Tolstoy PM; Toney MD; Jonsson KH; Limbach HH
    J Phys Chem B; 2007 Apr; 111(15):3869-76. PubMed ID: 17388551
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive immunization.
    Wirsching P; Ashley JA; Lo CH; Janda KD; Lerner RA
    Science; 1995 Dec; 270(5243):1775-82. PubMed ID: 8525366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic antibodies induced by a zwitterionic hapten.
    Tsumuraya T; Takazawa N; Tsunakawa A; Fleck R; Masamune S
    Chemistry; 2001 Sep; 7(17):3748-55. PubMed ID: 11575776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computer-aided rational design of catalytic antibodies: The 1F7 case.
    Martí S; Andrés J; Silla E; Moliner V; Tuñón I; Bertrán J
    Angew Chem Int Ed Engl; 2007; 46(1-2):286-90. PubMed ID: 17124715
    [No Abstract]   [Full Text] [Related]  

  • 60. A comparison of flexible and constrained haptens in eliciting antibody catalysts for paraoxon hydrolysis.
    Spivak DA; Hoffman TZ; Moore AH; Taylor MJ; Janda KD
    Bioorg Med Chem; 1999 Jun; 7(6):1145-50. PubMed ID: 10428386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.