These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16782603)

  • 21. Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data.
    Martín-Español A; Zammit-Mangion A; Clarke PJ; Flament T; Helm V; King MA; Luthcke SB; Petrie E; Rémy F; Schön N; Wouters B; Bamber JL
    J Geophys Res Earth Surf; 2016 Feb; 121(2):182-200. PubMed ID: 27134805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.
    Pritchard HD; Arthern RJ; Vaughan DG; Edwards LA
    Nature; 2009 Oct; 461(7266):971-5. PubMed ID: 19776741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet.
    Cuffey KM; Marshall SJ
    Nature; 2000 Apr; 404(6778):591-4. PubMed ID: 10766239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of the Antarctic ice sheet: new understanding and challenges.
    Payne AJ; Hunt JC; Wingham DJ
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1867-72. PubMed ID: 16782613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin.
    Feldmann J; Levermann A
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14191-6. PubMed ID: 26578762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic Antarctic ice sheet during the early to mid-Miocene.
    Gasson E; DeConto RM; Pollard D; Levy RH
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3459-64. PubMed ID: 26903645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ice-sheet mass balance and climate change.
    Hanna E; Navarro FJ; Pattyn F; Domingues CM; Fettweis X; Ivins ER; Nicholls RJ; Ritz C; Smith B; Tulaczyk S; Whitehouse PL; Zwally HJ
    Nature; 2013 Jun; 498(7452):51-9. PubMed ID: 23739423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contemporary sea level rise.
    Cazenave A; Llovel W
    Ann Rev Mar Sci; 2010; 2():145-73. PubMed ID: 21141661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurements of time-variable gravity show mass loss in Antarctica.
    Velicogna I; Wahr J
    Science; 2006 Mar; 311(5768):1754-6. PubMed ID: 16513944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glacier mass loss. Dynamic thinning of glaciers on the Southern Antarctic Peninsula.
    Wouters B; Martin-Español A; Helm V; Flament T; van Wessem JM; Ligtenberg SR; van den Broeke MR; Bamber JL
    Science; 2015 May; 348(6237):899-903. PubMed ID: 25999505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2.
    DeConto RM; Pollard D
    Nature; 2003 Jan; 421(6920):245-9. PubMed ID: 12529638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. History, mass loss, structure, and dynamic behavior of the Antarctic Ice Sheet.
    Bell RE; Seroussi H
    Science; 2020 Mar; 367(6484):1321-1325. PubMed ID: 32193319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A decade of progress in observing and modelling Antarctic subglacial water systems.
    Fricker HA; Siegfried MR; Carter SP; Scambos TA
    Philos Trans A Math Phys Eng Sci; 2016 Jan; 374(2059):. PubMed ID: 26667904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The environment and evolution of the West Antarctic ice sheet: setting the stage.
    Bindschadler R
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1583-605. PubMed ID: 16782601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trace metals in Antarctica related to climate change and increasing human impact.
    Bargagli R
    Rev Environ Contam Toxicol; 2000; 166():129-73. PubMed ID: 10868078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice-sheet contributions to future sea-level change.
    Gregory JM; Huybrechts P
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1709-31. PubMed ID: 16782607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice mass loss sensitivity to the Antarctic ice sheet basal thermal state.
    Dawson EJ; Schroeder DM; Chu W; Mantelli E; Seroussi H
    Nat Commun; 2022 Sep; 13(1):4957. PubMed ID: 36104329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.
    Yamane M; Yokoyama Y; Abe-Ouchi A; Obrochta S; Saito F; Moriwaki K; Matsuzaki H
    Nat Commun; 2015 Apr; 6():7016. PubMed ID: 25908601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acceleration of Greenland ice mass loss in spring 2004.
    Velicogna I; Wahr J
    Nature; 2006 Sep; 443(7109):329-31. PubMed ID: 16988710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.