These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16782747)

  • 81. Primary activity measurements with a 4πβ-4πγ coincidence counting system.
    Nedjadi Y; Bailat CJ; Bochud FO
    Appl Radiat Isot; 2012 Jan; 70(1):249-56. PubMed ID: 21840220
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Novel real-time dosimetry technique based on radiation-induced surface activation.
    Tomozawa H; Takamasa T; Okamoto K; Tsujimura N; Date H; Nakata J
    Radiat Prot Dosimetry; 2006; 120(1-4):373-7. PubMed ID: 16644997
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.
    Rollet S; Autischer M; Beck P; Latocha M
    Radiat Prot Dosimetry; 2007; 125(1-4):425-8. PubMed ID: 17277327
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [Comparison of different methods for the determination of the energy dose distribution of enclosed Cs-137 afterloading sources].
    Krispel F
    Strahlentherapie; 1983 May; 159(5):306-14. PubMed ID: 6857746
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Temperature dependence of spurious pulses in use of plastic scintillation detectors.
    Kawada Y; Ito J; Wang QW
    Appl Radiat Isot; 2004; 60(2-4):403-7. PubMed ID: 14987675
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Development of a rat solid tumor model for continuous low-dose-rate irradiation studies using 125I and 103Pd sources.
    Nath R; Bongiorni P; Chen Z; Gragnano J; Rockwell S
    Brachytherapy; 2004; 3(3):159-72. PubMed ID: 15533809
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Technical Note: Identification of an optimal electromagnetic sensor for in vivo electromagnetic-tracked scintillation dosimeter for HDR brachytherapy.
    Tho D; Beaulieu L
    Med Phys; 2019 May; 46(5):2031-2036. PubMed ID: 30919450
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A study of the irradiation temperature coefficient for L-alanine and DL-alanine dosemeters.
    Desrosiers MF; Lin M; Cooper SL; Cui Y; Chen K
    Radiat Prot Dosimetry; 2006; 120(1-4):235-7. PubMed ID: 16645000
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The thermoluminescence dose-response and other characteristics of the high-temperature TL in LiF:Mg,Ti (TLD-100).
    Horowitz YS; Oster L; Datz H
    Radiat Prot Dosimetry; 2007; 124(2):191-205. PubMed ID: 17616543
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Determination of quality parameters from statistical analysis of routine TLD dosimetry data.
    German U; Weinstein M; Pelled O
    Radiat Prot Dosimetry; 2006; 119(1-4):306-9. PubMed ID: 16709715
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Rapid two-dimensional dose measurement in brachytherapy using plastic scintillator sheet: linearity, signal-to-noise ratio, and energy response characteristics.
    Perera H; Williamson JF; Monthofer SP; Binns WR; Klarmann J; Fuller GL; Wong JW
    Int J Radiat Oncol Biol Phys; 1992; 23(5):1059-69. PubMed ID: 1639641
    [TBL] [Abstract][Full Text] [Related]  

  • 92. TL detectors for gamma ray dose measurements in criticality accidents.
    Miljanić S; Zorko B; Gregori B; Knezević Z
    Radiat Prot Dosimetry; 2007; 125(1-4):318-22. PubMed ID: 17369267
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Microdosimetric modelling of the response of thermoluminescence detectors to low- and high-LET ionising radiation.
    Olko P; Bilski P; Budzanowski M; Czopyk L; Swakon J; Waligorski MP
    Radiat Prot Dosimetry; 2006; 122(1-4):378-81. PubMed ID: 17261540
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Influence of thermal treatments on the response of sand radiation detectors for high-dose dosimetry.
    Caldas LV; Teixeira MI; Ferraz GM
    Radiat Prot Dosimetry; 2006; 120(1-4):230-4. PubMed ID: 16766572
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Design of a phantom for the quality control of high dose rate 192Ir source used in brachytherapy.
    Ochoa R; Gómez F; Ferreira IH; Gutt F; de Almeida CE
    Radiother Oncol; 2007 Feb; 82(2):222-8. PubMed ID: 17267060
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Application of accelerators for the research and development of scintillators.
    Shibuya K; Koshimizu M; Asai K; Muroya Y; Katsumura Y; Inadama N; Yoshida E; Nishikido F; Yamaya T; Murayama H
    Rev Sci Instrum; 2007 Aug; 78(8):083303. PubMed ID: 17764319
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.
    Eichmann M; Thomann B
    Med Phys; 2017 Sep; 44(9):4900-4909. PubMed ID: 28548280
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Dose imaging with gel-dosemeter layers: optical analysis and dedicated software.
    Gambarini G; Carrara M; Gay S; Tomatis S
    Radiat Prot Dosimetry; 2006; 120(1-4):144-7. PubMed ID: 16891350
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ion diffusion modelling of Fricke-agarose dosemeter gels.
    de Pasquale F; Barone P; Sebastiani G; d'Errico F; Egger E; Luciani AM; Pacilio M; Guidoni L; Viti V
    Radiat Prot Dosimetry; 2006; 120(1-4):151-4. PubMed ID: 16644939
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Application of a glass rod detector for the output factor measurement in the CyberKnife.
    Rah JE; Shin DO; Jang JS; Kim MC; Yoon SC; Suh TS
    Appl Radiat Isot; 2008 Dec; 66(12):1980-5. PubMed ID: 18693026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.