BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 16782808)

  • 1. Target cell-specific modulation of neuronal activity by astrocytes.
    Kozlov AS; Angulo MC; Audinat E; Charpak S
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10058-63. PubMed ID: 16782808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory Bulb.
    Halabisky B; Strowbridge BW
    J Neurophysiol; 2003 Aug; 90(2):644-54. PubMed ID: 12711716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb.
    Hayashi Y; Momiyama A; Takahashi T; Ohishi H; Ogawa-Meguro R; Shigemoto R; Mizuno N; Nakanishi S
    Nature; 1993 Dec; 366(6456):687-90. PubMed ID: 7903116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.
    Ghatpande AS; Gelperin A
    J Neurophysiol; 2009 Apr; 101(4):2052-61. PubMed ID: 19225175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells.
    Egger V
    Eur J Neurosci; 2008 Apr; 27(8):2066-75. PubMed ID: 18412627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of olfactory memories mediated by nitric oxide.
    Kendrick KM; Guevara-Guzman R; Zorrilla J; Hinton MR; Broad KD; Mimmack M; Ohkura S
    Nature; 1997 Aug; 388(6643):670-4. PubMed ID: 9262400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake.
    Gurden H; Uchida N; Mainen ZF
    Neuron; 2006 Oct; 52(2):335-45. PubMed ID: 17046695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb.
    Fang LY; Quan RD; Kaba H
    Neurosci Lett; 2008 Jun; 438(2):133-7. PubMed ID: 18468792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taming time in the olfactory bulb.
    Segev I
    Nat Neurosci; 1999 Dec; 2(12):1041-3. PubMed ID: 10570474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological evidence for vesicular glutamate release from astrocytes.
    Bergersen LH; Gundersen V
    Neuroscience; 2009 Jan; 158(1):260-5. PubMed ID: 18479831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate exocytosis from astrocytes controls synaptic strength.
    Jourdain P; Bergersen LH; Bhaukaurally K; Bezzi P; Santello M; Domercq M; Matute C; Tonello F; Gundersen V; Volterra A
    Nat Neurosci; 2007 Mar; 10(3):331-9. PubMed ID: 17310248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of D2 dopamine receptor in the olfactory glomeruli of the rat olfactory bulb.
    Gutièrrez-Mecinas M; Crespo C; Blasco-Ibáñez JM; Gracia-Llanes FJ; Marqués-Marí AI; Nácher J; Varea E; Martínez-Guijarro FJ
    Eur J Neurosci; 2005 Sep; 22(6):1357-67. PubMed ID: 16190891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurosteroid modulation of neuronal excitability and synaptic transmission in the rat medial vestibular nuclei.
    Grassi S; Frondaroli A; Dieni C; Dutia MB; Pettorossi VE
    Eur J Neurosci; 2007 Jul; 26(1):23-32. PubMed ID: 17596193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons.
    Hu R; Cai WQ; Wu XG; Yang Z
    Neuroscience; 2007 Feb; 144(4):1229-40. PubMed ID: 17184929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic phenotype of periglomerular cells in the rodent olfactory bulb.
    Panzanelli P; Fritschy JM; Yanagawa Y; Obata K; Sassoè-Pognetto M
    J Comp Neurol; 2007 Jun; 502(6):990-1002. PubMed ID: 17444497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentylenetetrazole-induced seizures affect binding site densities for GABA, glutamate and adenosine receptors in the rat brain.
    Cremer CM; Palomero-Gallagher N; Bidmon HJ; Schleicher A; Speckmann EJ; Zilles K
    Neuroscience; 2009 Sep; 163(1):490-9. PubMed ID: 19345722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.
    Strowbridge BW
    Neuron; 2010 Feb; 65(3):295-7. PubMed ID: 20159443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA-mediated release of glutamate and GABA in the subthalamic nucleus is mediated by dopamine: an in vivo microdialysis study in rats.
    Ampe B; Massie A; D'Haens J; Ebinger G; Michotte Y; Sarre S
    J Neurochem; 2007 Nov; 103(3):1063-74. PubMed ID: 17727638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flash photolysis reveals a diversity of ionotropic glutamate receptors on the mitral cell somatodendritic membrane.
    Lowe G
    J Neurophysiol; 2003 Sep; 90(3):1737-46. PubMed ID: 12724365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.