BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 16783341)

  • 1. Rational design of inhibitors that bind to inactive kinase conformations.
    Liu Y; Gray NS
    Nat Chem Biol; 2006 Jul; 2(7):358-64. PubMed ID: 16783341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorophore labeling of the glycine-rich loop as a method of identifying inhibitors that bind to active and inactive kinase conformations.
    Simard JR; Getlik M; Grütter C; Schneider R; Wulfert S; Rauh D
    J Am Chem Soc; 2010 Mar; 132(12):4152-60. PubMed ID: 20201574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors.
    Simard JR; Getlik M; Grütter C; Pawar V; Wulfert S; Rabiller M; Rauh D
    J Am Chem Soc; 2009 Sep; 131(37):13286-96. PubMed ID: 19572644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Displacement assay for the detection of stabilizers of inactive kinase conformations.
    Klüter S; Grütter C; Naqvi T; Rabiller M; Simard JR; Pawar V; Getlik M; Rauh D
    J Med Chem; 2010 Jan; 53(1):357-67. PubMed ID: 19928858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence, structure, and active site analyses of p38 MAP kinase: exploiting DFG-out conformation as a strategy to design new type II leads.
    Badrinarayan P; Sastry GN
    J Chem Inf Model; 2011 Jan; 51(1):115-29. PubMed ID: 21141877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pharmacophore map of small molecule protein kinase inhibitors.
    McGregor MJ
    J Chem Inf Model; 2007; 47(6):2374-82. PubMed ID: 17941626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general strategy for creating "inactive-conformation" abl inhibitors.
    Okram B; Nagle A; Adrián FJ; Lee C; Ren P; Wang X; Sim T; Xie Y; Wang X; Xia G; Spraggon G; Warmuth M; Liu Y; Gray NS
    Chem Biol; 2006 Jul; 13(7):779-86. PubMed ID: 16873026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of c-Met kinase domain complexes: a new specific catalytic site receptor model for defining binding modes of ATP-competitive ligands.
    Asses Y; Leroux V; Tairi-Kellou S; Dono R; Maina F; Maigret B
    Chem Biol Drug Des; 2009 Dec; 74(6):560-70. PubMed ID: 19909299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding.
    Bogoyevitch MA; Fairlie DP
    Drug Discov Today; 2007 Aug; 12(15-16):622-33. PubMed ID: 17706543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T; Elcock AH
    J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of the constitutive activity and STI571 resistance of Asp816Val mutant KIT receptor tyrosine kinase.
    Foster R; Griffith R; Ferrao P; Ashman L
    J Mol Graph Model; 2004 Oct; 23(2):139-52. PubMed ID: 15363456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug discovery process for kinase inhibitors.
    Weinmann H; Metternich R
    Chembiochem; 2005 Mar; 6(3):455-9. PubMed ID: 15742380
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches.
    Vieth M; Erickson J; Wang J; Webster Y; Mader M; Higgs R; Watson I
    J Med Chem; 2009 Oct; 52(20):6456-66. PubMed ID: 19791746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New protein kinase CK2 inhibitors: jumping out of the catalytic box.
    Prudent R; Cochet C
    Chem Biol; 2009 Feb; 16(2):112-20. PubMed ID: 19246001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity.
    Verkhivker GM
    Proteins; 2007 Mar; 66(4):912-29. PubMed ID: 17173284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural biology contributions to tyrosine kinase drug discovery.
    Cowan-Jacob SW; Möbitz H; Fabbro D
    Curr Opin Cell Biol; 2009 Apr; 21(2):280-7. PubMed ID: 19208462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacophore modeling studies of type I and type II kinase inhibitors of Tie2.
    Xie QQ; Xie HZ; Ren JX; Li LL; Yang SY
    J Mol Graph Model; 2009 Feb; 27(6):751-8. PubMed ID: 19138543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.
    Yu H; Wang Z; Zhang L; Zhang J; Huang Q
    Chem Biol Drug Des; 2007 Mar; 69(3):204-11. PubMed ID: 17441906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-family-oriented focused libraries for kinases--conceptual design aspects and commercial availability.
    Prien O
    Chembiochem; 2005 Mar; 6(3):500-5. PubMed ID: 15742385
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 30.