BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16783362)

  • 1. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling.
    Alderton GK; Galbiati L; Griffith E; Surinya KH; Neitzel H; Jackson AP; Jeggo PA; O'Driscoll M
    Nat Cell Biol; 2006 Jul; 8(7):725-33. PubMed ID: 16783362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1.
    Tibelius A; Marhold J; Zentgraf H; Heilig CE; Neitzel H; Ducommun B; Rauch A; Ho AD; Bartek J; Krämer A
    J Cell Biol; 2009 Jun; 185(7):1149-57. PubMed ID: 19546241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcephalin: a causal link between impaired damage response signalling and microcephaly.
    O'Driscoll M; Jackson AP; Jeggo PA
    Cell Cycle; 2006 Oct; 5(20):2339-44. PubMed ID: 17102619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly.
    Lin SY; Rai R; Li K; Xu ZX; Elledge SJ
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15105-9. PubMed ID: 16217032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control.
    Demidova AR; Aau MY; Zhuang L; Yu Q
    J Biol Chem; 2009 Feb; 284(7):4132-9. PubMed ID: 19060337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway.
    Gruber R; Zhou Z; Sukchev M; Joerss T; Frappart PO; Wang ZQ
    Nat Cell Biol; 2011 Sep; 13(11):1325-34. PubMed ID: 21947081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitotic DNA damage response: Polo-like kinase-1 is dephosphorylated through ATM-Chk1 pathway.
    Lee HJ; Hwang HI; Jang YJ
    Cell Cycle; 2010 Jun; 9(12):2389-98. PubMed ID: 20581453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage.
    Sørensen CS; Syljuåsen RG; Lukas J; Bartek J
    Cell Cycle; 2004 Jul; 3(7):941-5. PubMed ID: 15190204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells.
    Tyagi A; Singh RP; Agarwal C; Siriwardana S; Sclafani RA; Agarwal R
    Carcinogenesis; 2005 Nov; 26(11):1978-87. PubMed ID: 15975956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of Plk1 at S137 and T210 is inhibited in response to DNA damage.
    Tsvetkov L; Stern DF
    Cell Cycle; 2005 Jan; 4(1):166-71. PubMed ID: 15611664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human decatenation checkpoint.
    Deming PB; Cistulli CA; Zhao H; Graves PR; Piwnica-Worms H; Paules RS; Downes CS; Kaufmann WK
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12044-9. PubMed ID: 11593014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Hydroxynonenal induces G2/M phase cell cycle arrest by activation of the ataxia telangiectasia mutated and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) signaling pathway.
    Chaudhary P; Sharma R; Sahu M; Vishwanatha JK; Awasthi S; Awasthi YC
    J Biol Chem; 2013 Jul; 288(28):20532-46. PubMed ID: 23733185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irradiation-induced G2/M checkpoint response requires ERK1/2 activation.
    Yan Y; Black CP; Cowan KH
    Oncogene; 2007 Jul; 26(32):4689-98. PubMed ID: 17297454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication independent ATR signalling leads to G2/M arrest requiring Nbs1, 53BP1 and MDC1.
    Stiff T; Cerosaletti K; Concannon P; O'Driscoll M; Jeggo PA
    Hum Mol Genet; 2008 Oct; 17(20):3247-53. PubMed ID: 18664457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway.
    Alderton GK; Joenje H; Varon R; Børglum AD; Jeggo PA; O'Driscoll M
    Hum Mol Genet; 2004 Dec; 13(24):3127-38. PubMed ID: 15496423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase.
    Jin J; Ang XL; Ye X; Livingstone M; Harper JW
    J Biol Chem; 2008 Jul; 283(28):19322-8. PubMed ID: 18480045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo.
    Rickmyre JL; Dasgupta S; Ooi DL; Keel J; Lee E; Kirschner MW; Waddell S; Lee LA
    J Cell Sci; 2007 Oct; 120(Pt 20):3565-77. PubMed ID: 17895362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status.
    Huntoon CJ; Flatten KS; Wahner Hendrickson AE; Huehls AM; Sutor SL; Kaufmann SH; Karnitz LM
    Cancer Res; 2013 Jun; 73(12):3683-91. PubMed ID: 23548269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability.
    Collis SJ; Barber LJ; Clark AJ; Martin JS; Ward JD; Boulton SJ
    Nat Cell Biol; 2007 Apr; 9(4):391-401. PubMed ID: 17384638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and clinical impact of haploinsufficiency for genes involved in ATR signaling.
    O'Driscoll M; Dobyns WB; van Hagen JM; Jeggo PA
    Am J Hum Genet; 2007 Jul; 81(1):77-86. PubMed ID: 17564965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.