These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16783445)

  • 1. Trade-offs between lens complexity and real estate utilization in a free-space multichip global interconnection module.
    Milojkovic P; Christensen MP; Haney MW
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1787-95. PubMed ID: 16783445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors.
    Haney MW; Christensen MP; Milojkovic P; Ekman J; Chandramani P; Rozier R; Kiamilev F; Liu Y; Hibbs-Brenner M
    Appl Opt; 1999 Oct; 38(29):6190-200. PubMed ID: 18324143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a hybrid micro/macro-optical method for distortion removal in free-space optical interconnections.
    Christensen MP; Milojkovic P; Haney MW
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2473-8. PubMed ID: 12469743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of hybrid micro-macro optical method for distortion removal in multi-chip global free-space optical-interconnection systems.
    Christensen MP; McFadden MJ; Milojkovic P; Haney MW
    Appl Opt; 2002 Dec; 41(35):7480-6. PubMed ID: 12502306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-distortion hybrid optical shuffle concept.
    Christensen MP; Milojkovic P; Haney MW
    Opt Lett; 1999 Feb; 24(3):169-71. PubMed ID: 18071443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shuffle-equivalent interconnection topologies based on computer-generated binary-phase gratings.
    Cloonan TJ; Richards GW; Morrison RL; Lentine AL; Sasian JM; McCormick FB; Hinterlong SJ; Hinton HS
    Appl Opt; 1994 Mar; 33(8):1405-30. PubMed ID: 20862167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichip module with planar-integrated free-space optical vector-matrix-type interconnects.
    Gruber M
    Appl Opt; 2004 Jan; 43(2):463-70. PubMed ID: 14735965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-space parallel multichip interconnection system.
    Zheng X; Marchand PJ; Huang D; Esener SC
    Appl Opt; 2000 Jul; 39(20):3516-24. PubMed ID: 18349922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks.
    Li G; Huang D; Yuceturk E; Marchand PJ; Esener SC; Ozguz VH; Liu Y
    Appl Opt; 2002 Jan; 41(2):348-60. PubMed ID: 11899274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays.
    Wang R; Rakić AD; Majewski ML
    Appl Opt; 2002 Jun; 41(17):3469-78. PubMed ID: 12074519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of a vertical-cavity surface-emitting laser-based bidirectional free-space optical interconnect.
    Zhou HJ; Morozov V; Neff J; Fedor A
    Appl Opt; 1997 Jun; 36(17):3835-53. PubMed ID: 18253411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems.
    Kajita M; Kasahara K; Kim TJ; Neilson DT; Ogura I; Redmond I; Schenfeld E
    Appl Opt; 1998 Jun; 37(17):3746-55. PubMed ID: 18273346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of an optical interconnect for photonic backplane applications.
    Robertson B
    Appl Opt; 1998 May; 37(14):2974-84. PubMed ID: 18273244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification.
    Hergenhan G; Lücke B; Brauch U
    Appl Opt; 2003 Mar; 42(9):1667-80. PubMed ID: 12665097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated free-space optical interconnect fabricated in planar optics using chirped microlens arrays.
    Wippermann F; Radtke D; Amberg M; Sinzinger S
    Opt Express; 2006 Oct; 14(22):10765-78. PubMed ID: 19529486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D integrated heterogeneous intra-chip free-space optical interconnect.
    Ciftcioglu B; Berman R; Wang S; Hu J; Savidis I; Jain M; Moore D; Huang M; Friedman EG; Wicks G; Wu H
    Opt Express; 2012 Feb; 20(4):4331-45. PubMed ID: 22418191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of side emission from large-area vertical-cavity surface-emitting lasers.
    Torii K; Naito H; Miyamoto M; Aoki Y; Higuchi A; Nagakura T; Kageyama N; Aoshima H; Morita T; Maeda J; Yoshida H
    Appl Opt; 2015 May; 54(14):4589-93. PubMed ID: 25967520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum holographic optical element lens recorded by visible laser beams for an infrared two-dimensional vertical-cavity surface-emitting laser array.
    Matsuura Y; Awatsuji Y; Kubota T
    Opt Lett; 2003 May; 28(10):795-7. PubMed ID: 12779149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the optimum cluster parameters in a clustered free-space optical interconnect.
    Châteauneuf M; Kirk AG
    Appl Opt; 2003 Oct; 42(29):5906-17. PubMed ID: 14577544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of hybrid microlens integration with vertical-cavity surface-emitting lasers for free-space optical links.
    Qi F; Bryan NK
    Opt Express; 2002 May; 10(9):413-8. PubMed ID: 19436375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.