BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16783481)

  • 1. Interaction of native bile acids with human apical sodium-dependent bile acid transporter (hASBT): influence of steroidal hydroxylation pattern and C-24 conjugation.
    Balakrishnan A; Wring SA; Polli JE
    Pharm Res; 2006 Jul; 23(7):1451-9. PubMed ID: 16783481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of charge and steric bulk in the C-24 region on the interaction of bile acids with human apical sodium-dependent bile acid transporter.
    Balakrishnan A; Wring SA; Coop A; Polli JE
    Mol Pharm; 2006; 3(3):282-92. PubMed ID: 16749860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): role of 3- and 7-OH moieties on binding and translocation of bile acids.
    González PM; Lagos CF; Ward WC; Polli JE
    Mol Pharm; 2014 Feb; 11(2):588-98. PubMed ID: 24328955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT).
    Rais R; Fletcher S; Polli JE
    J Pharm Sci; 2011 Mar; 100(3):1184-95. PubMed ID: 20848648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hASBT).
    Balakrishnan A; Sussman DJ; Polli JE
    Pharm Res; 2005 Aug; 22(8):1269-80. PubMed ID: 16078136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative irreversible inhibitors of the human sodium-dependent bile acid transporter (hASBT; SLC10A2) support the role of transmembrane domain 7 in substrate binding/translocation.
    González PM; Hussainzada N; Swaan PW; Mackerell AD; Polli JE
    Pharm Res; 2012 Jul; 29(7):1821-31. PubMed ID: 22354836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target.
    Balakrishnan A; Polli JE
    Mol Pharm; 2006; 3(3):223-30. PubMed ID: 16749855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2).
    Banerjee A; Ray A; Chang C; Swaan PW
    Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants for transport across the intestinal bile acid transporter using C-24 bile acid conjugates.
    Rais R; Acharya C; Mackerell AD; Polli JE
    Mol Pharm; 2010 Dec; 7(6):2240-54. PubMed ID: 20939504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural requirements of bile acid transporters: C-3 and C-7 modifications of steroidal hydroxyl groups.
    Kolhatkar V; Polli JE
    Eur J Pharm Sci; 2012 May; 46(1-2):86-99. PubMed ID: 22387310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition requirements of the human apical sodium-dependent bile acid transporter (hASBT) using aminopiperidine conjugates of glutamyl-bile acids.
    González PM; Acharya C; Mackerell AD; Polli JE
    Pharm Res; 2009 Jul; 26(7):1665-78. PubMed ID: 19384469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias in estimation of transporter kinetic parameters from overexpression systems: Interplay of transporter expression level and substrate affinity.
    Balakrishnan A; Hussainzada N; Gonzalez P; Bermejo M; Swaan PW; Polli JE
    J Pharmacol Exp Ther; 2007 Jan; 320(1):133-44. PubMed ID: 17038509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased acyclovir oral bioavailability via a bile acid conjugate.
    Tolle-Sander S; Lentz KA; Maeda DY; Coop A; Polli JE
    Mol Pharm; 2004 Jan; 1(1):40-8. PubMed ID: 15832499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel nonsteroidal compounds as substrates or inhibitors of hASBT.
    Kolhatkar V; Diao L; Acharya C; Mackerell AD; Polli JE
    J Pharm Sci; 2012 Jan; 101(1):116-26. PubMed ID: 22109685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human bile acid transporter ASBT (SLC10A2) forms functional non-covalent homodimers and higher order oligomers.
    Chothe PP; Czuba LC; Moore RH; Swaan PW
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):645-653. PubMed ID: 29198943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of novel synthetic MTS conjugates of bile acids for site-directed sulfhydryl labeling of cysteine residues in bile acid binding and transporting proteins.
    Ray A; Banerjee A; Chang C; Khantwal CM; Swaan PW
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1473-6. PubMed ID: 16387497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FTF and LRH-1, two related but different transcription factors in human Caco-2 cells: their different roles in the regulation of bile acid transport.
    Pan DH; Chen F; Neimark E; Li X; Shneider BL
    Biochim Biophys Acta; 2005 Dec; 1732(1-3):31-7. PubMed ID: 16469397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol modulates human intestinal sodium-dependent bile acid transporter.
    Alrefai WA; Sarwar Z; Tyagi S; Saksena S; Dudeja PK; Gill RK
    Am J Physiol Gastrointest Liver Physiol; 2005 May; 288(5):G978-85. PubMed ID: 15604201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurocholate transport by hepatic and intestinal bile acid transporters is independent of FIC1 overexpression in Madin-Darby canine kidney cells.
    Harris MJ; Kagawa T; Dawson PA; Arias IM
    J Gastroenterol Hepatol; 2004 Jul; 19(7):819-25. PubMed ID: 15209631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SLC10A4 is a protease-activated transporter that transports bile acids.
    Abe T; Kanemitu Y; Nakasone M; Kawahata I; Yamakuni T; Nakajima A; Suzuki N; Nishikawa M; Hishinuma T; Tomioka Y
    J Biochem; 2013 Jul; 154(1):93-101. PubMed ID: 23589386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.