These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 16783510)

  • 21. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Spiral electrode for electrophysiological research on the deep structures of the brain].
    Usov VV; Protasov VA; Beliaev VV; Annaraud DK; Cherepanov IM
    Fiziol Zh SSSR Im I M Sechenova; 1973 Nov; 59(11):1764-5. PubMed ID: 4791915
    [No Abstract]   [Full Text] [Related]  

  • 23. Cross correlation analysis of averaged slow wave field potentials related to auditory stimuli.
    Turbes CC; Schneider GT; Simard JM; Morgan RJ
    Biomed Sci Instrum; 1981; 17():53-9. PubMed ID: 7284535
    [No Abstract]   [Full Text] [Related]  

  • 24. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A lightweight microdrive for single-unit recording in freely moving rats and pigeons.
    Bilkey DK; Russell N; Colombo M
    Methods; 2003 Jun; 30(2):152-8. PubMed ID: 12725781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A TinyOS-enabled MICA2-based wireless neural interface.
    Farshchi S; Nuyujukian PH; Pesterev A; Mody I; Judy JW
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1416-24. PubMed ID: 16830946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo validation of the electronic depth control probes.
    Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I
    Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification.
    Bragin A; Hetke J; Wilson CL; Anderson DJ; Engel J; Buzsáki G
    J Neurosci Methods; 2000 May; 98(1):77-82. PubMed ID: 10837874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Microdialysis in unrestrained animals with simultaneous recording of neurophysiological processes in the point of probe localisation].
    Korshunov VA
    Ross Fiziol Zh Im I M Sechenova; 2005 Jun; 91(6):700-5. PubMed ID: 16119450
    [No Abstract]   [Full Text] [Related]  

  • 30. Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes.
    Matthews R; Turner PJ; McDonald NJ; Ermolaev K; Manus T; Shelby RA; Steindorf M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5871-5. PubMed ID: 19164053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent.
    Vöröslakos M; Petersen PC; Vöröslakos B; Buzsáki G
    Elife; 2021 May; 10():. PubMed ID: 34009122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.
    Lee SM; Kim JH; Byeon HJ; Choi YY; Park KS; Lee SH
    J Neural Eng; 2013 Jun; 10(3):036006. PubMed ID: 23574793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals.
    Ye X; Wang P; Liu J; Zhang S; Jiang J; Wang Q; Chen W; Zheng X
    J Neurosci Methods; 2008 Sep; 174(2):186-93. PubMed ID: 18674564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of a remote-controlled minivalve, carried by freely moving animals on their head, to achieve instant pharmacological effects in intracerebral drug-perfusion studies.
    Ludvig N; Kovacs L; Kando L; Medveczky G; Tang HM; Eberle LP; Lemon CR
    Brain Res Brain Res Protoc; 2002 Feb; 9(1):23-31. PubMed ID: 11852267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New head exposure system for use in human provocation studies with EEG recording during GSM900- and UMTS-like exposure.
    Schmid G; Cecil S; Goger C; Trimmel M; Kuster N; Molla-Djafari H
    Bioelectromagnetics; 2007 Dec; 28(8):636-47. PubMed ID: 17654486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive survey of brain interface technology designs.
    Mason SG; Bashashati A; Fatourechi M; Navarro KF; Birch GE
    Ann Biomed Eng; 2007 Feb; 35(2):137-69. PubMed ID: 17115262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. User customization of the feature generator of an asynchronous brain interface.
    Bashashati A; Fatourechi M; Ward RK; Birch GE
    Ann Biomed Eng; 2006 Jun; 34(6):1051-60. PubMed ID: 16783660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active stabilization of electrodes for intracellular recording in awake behaving animals.
    Fee MS
    Neuron; 2000 Sep; 27(3):461-8. PubMed ID: 11055429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.