These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16783652)

  • 1. Near-wall deposition probability of blood elements as a new hemodynamic wall parameter.
    Kim MC; Nam JH; Lee CS
    Ann Biomed Eng; 2006 Jun; 34(6):958-70. PubMed ID: 16783652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models.
    Marshall I; Zhao S; Papathanasopoulou P; Hoskins P; Xu Y
    J Biomech; 2004 May; 37(5):679-87. PubMed ID: 15046997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery.
    Boyd J; Buick J; Cosgrove JA; Stansell P
    Phys Med Biol; 2005 Oct; 50(20):4783-96. PubMed ID: 16204872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of stenosis severity on the hemodynamic parameters-assessment of the correlation between stress phase angle and wall shear stress.
    Sadeghi MR; Shirani E; Tafazzoli-Shadpour M; Samaee M
    J Biomech; 2011 Oct; 44(15):2614-26. PubMed ID: 21906742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotid geometry effects on blood flow and on risk for vascular disease.
    Nguyen KT; Clark CD; Chancellor TJ; Papavassiliou DV
    J Biomech; 2008; 41(1):11-9. PubMed ID: 17919645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled fluid-wall modelling of steady flow in stenotic carotid arteries.
    Yakhshi-Tafti E; Tafazzoli-Shadpour M; Alavi SH; Mojra A
    J Med Eng Technol; 2009; 33(7):544-50. PubMed ID: 19591048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influences of stenosis on the downstream flow pattern in curved arteries.
    Liu B
    Med Eng Phys; 2007 Oct; 29(8):868-76. PubMed ID: 17081795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.
    Van Tricht I; De Wachter D; Tordoir J; Verdonck P
    J Biomech; 2006; 39(2):226-36. PubMed ID: 16321624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.
    Schirmer CM; Malek AM
    Neurosurgery; 2007 Oct; 61(4):853-63; discussion 863-4. PubMed ID: 17986948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved DPIV investigation of pulsatile flow in symmetric stenotic arteries--effects of phase angle.
    Karri S; Vlachos PP
    J Biomech Eng; 2010 Mar; 132(3):031010. PubMed ID: 20459198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between near-wall residence times of monocytes and early lesion growth in the rabbit aorto-celiac junction.
    Longest PW; Kleinstreuer C; Truskey GA; Buchanan JR
    Ann Biomed Eng; 2003 Jan; 31(1):53-64. PubMed ID: 12572656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N; Perrault R; Coisne D
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.