These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 16783655)

  • 61. Experimental investigation of nasal airflow.
    Doorly D; Taylor DJ; Franke P; Schroter RC
    Proc Inst Mech Eng H; 2008 May; 222(4):439-53. PubMed ID: 18595356
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry.
    de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G
    J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Indicators for the correct usage of intranasal medications: A computational fluid dynamics study.
    Garlapati RR; Lee HP; Chong FH; Wang de Y
    Laryngoscope; 2009 Oct; 119(10):1975-82. PubMed ID: 19655385
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hybrid mesh for nasal airflow studies.
    Zubair M; Abdullah MZ; Ahmad KA
    Comput Math Methods Med; 2013; 2013():727362. PubMed ID: 23983811
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Computational fluid dynamics analysis of the upper airway after rapid maxillary expansion: a case report.
    Ghoneima A; AlBarakati S; Jiang F; Kula K; Wasfy T
    Prog Orthod; 2015; 16():10. PubMed ID: 26061989
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Numerical simulation of two consecutive nasal respiratory cycles: toward a better understanding of nasal physiology.
    de Gabory L; Reville N; Baux Y; Boisson N; Bordenave L
    Int Forum Allergy Rhinol; 2018 Jun; 8(6):676-685. PubMed ID: 29337433
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Numerical simulation of nasal airflows and thermal air modification in newborns.
    Moreddu E; Meister L; Dabadie A; Triglia JM; Médale M; Nicollas R
    Med Biol Eng Comput; 2020 Feb; 58(2):307-317. PubMed ID: 31848979
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Particle image velocimetry measurements for the study of nasal airflow.
    Kim JK; Yoon JH; Kim CH; Nam TW; Shim DB; Shin HA
    Acta Otolaryngol; 2006 Mar; 126(3):282-7. PubMed ID: 16618655
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models.
    Walters DK; Luke WH
    J Biomech Eng; 2011 Jan; 133(1):011003. PubMed ID: 21186893
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection.
    Marsden AL; Vignon-Clementel IE; Chan FP; Feinstein JA; Taylor CA
    Ann Biomed Eng; 2007 Feb; 35(2):250-63. PubMed ID: 17171509
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A model of airflow in the nasal cavities: Implications for nasal air conditioning and epistaxis.
    Bailie N; Hanna B; Watterson J; Gallagher G
    Am J Rhinol Allergy; 2009; 23(3):244-9. PubMed ID: 19490795
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model.
    Shi H; Kleinstreuer C; Zhang Z
    J Biomech Eng; 2006 Oct; 128(5):697-706. PubMed ID: 16995756
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Structure of nasal cavity and characters of airflow].
    Liu YX; Yu S; Sun XZ; Su YF; Zhang J
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2005 Nov; 40(11):846-9. PubMed ID: 16408752
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of the ambient temperature on the airflow across a Caucasian nasal cavity.
    Burgos MA; Sanmiguel-Rojas E; Martín-Alcántara A; Hidalgo-Martínez M
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):430-45. PubMed ID: 24574201
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [The influence of nasal flow aerodynamics on the nasal physiology].
    Betlejewski S; Betlejewski A
    Otolaryngol Pol; 2008; 62(3):321-5. PubMed ID: 18652158
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A numerical simulation of intranasal air temperature during inspiration.
    Lindemann J; Keck T; Wiesmiller K; Sander B; Brambs HJ; Rettinger G; Pless D
    Laryngoscope; 2004 Jun; 114(6):1037-41. PubMed ID: 15179209
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
    Calmet H; Gambaruto AM; Bates AJ; Vázquez M; Houzeaux G; Doorly DJ
    Comput Biol Med; 2016 Feb; 69():166-80. PubMed ID: 26773939
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fluid mechanics based classification of the respiratory efficiency of several nasal cavities.
    Lintermann A; Meinke M; Schröder W
    Comput Biol Med; 2013 Nov; 43(11):1833-52. PubMed ID: 24209929
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Numerical simulation of airflow in the human nose.
    Weinhold I; Mlynski G
    Eur Arch Otorhinolaryngol; 2004 Sep; 261(8):452-5. PubMed ID: 14652769
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluation of Nasal Airflow and Resistance: Computational Modeling for Experimental Measurements.
    Kaneda S; Iida M; Yamamoto H; Sekine M; Ebisumoto K; Sakai A; Takakura Y
    Tokai J Exp Clin Med; 2019 Sep; 44(3):59-67. PubMed ID: 31448398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.