These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16783657)

  • 1. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.
    Corazza S; Mündermann L; Chaudhari AM; Demattio T; Cobelli C; Andriacchi TP
    Ann Biomed Eng; 2006 Jun; 34(6):1019-29. PubMed ID: 16783657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats.
    Filipe VM; Pereira JE; Costa LM; Maurício AC; Couto PA; Melo-Pinto P; Varejão AS
    J Neurosci Methods; 2006 May; 153(1):55-61. PubMed ID: 16337686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework for the functional identification of joint centers using markerless motion capture, validation for the hip joint.
    Corazza S; Mündermann L; Andriacchi T
    J Biomech; 2007; 40(15):3510-5. PubMed ID: 17697684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network approach to markerless measurement of human motion.
    Taha Z; Brown R; Wright D
    Biomed Sci Instrum; 1997; 33():441-6. PubMed ID: 9731400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences.
    Krosshaug T; Bahr R
    J Biomech; 2005 Apr; 38(4):919-29. PubMed ID: 15713313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2005 Nov; 38(11):2228-36. PubMed ID: 16154410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating effective degrees of freedom in motor systems.
    Clewley RH; Guckenheimer JM; Valero-Cuevas FJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):430-42. PubMed ID: 18269978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian framework for extracting human gait using strong prior knowledge.
    Zhou Z; Prügel-Bennett A; Damper RI
    IEEE Trans Pattern Anal Mach Intell; 2006 Nov; 28(11):1738-52. PubMed ID: 17063680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
    Zelman I; Galun M; Akselrod-Ballin A; Yekutieli Y; Hochner B; Flash T
    J Neurosci Methods; 2009 Aug; 182(1):97-109. PubMed ID: 19505502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A posture optimization algorithm for model-based motion capture of movement sequences.
    Zakotnik J; Matheson T; Dürr V
    J Neurosci Methods; 2004 May; 135(1-2):43-54. PubMed ID: 15020088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive approach towards the in vivo estimation of 3D inter-vertebral movements: methods and preliminary results.
    Cerveri P; Pedotti A; Ferrigno G
    Med Eng Phys; 2004 Dec; 26(10):841-53. PubMed ID: 15567700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.
    Rubenson J; Lloyd DG; Besier TF; Heliams DB; Fournier PA
    J Exp Biol; 2007 Jul; 210(Pt 14):2548-62. PubMed ID: 17601959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markerless human motion analysis in Gauss-Laguerre transform domain: an application to sit-to-stand in young and elderly people.
    Goffredo M; Schmid M; Conforto S; Carli M; Neri A; D'Alessio T
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):207-16. PubMed ID: 19126474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling soft tissue for kinematic analysis of multi-segment human body models.
    Benham MP; Wright DK; Bibb R
    Biomed Sci Instrum; 2001; 37():111-6. PubMed ID: 11347372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human motion capture data compression by model-based indexing: a power aware approach.
    Chattopadhyay S; Bhandarkar SM; Li K
    IEEE Trans Vis Comput Graph; 2007; 13(1):5-14. PubMed ID: 17093331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths.
    Scheys L; Van Campenhout A; Spaepen A; Suetens P; Jonkers I
    Gait Posture; 2008 Oct; 28(3):358-65. PubMed ID: 18571416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications.
    Corazza S; Gambaretto E; Mündermann L; Andriacchi TP
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):806-12. PubMed ID: 19272951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.