These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16783659)

  • 1. Extraction force and tissue change during removal of a tined intramuscular electrode from rat gastrocnemius.
    Bhadra N; Mortimer JT
    Ann Biomed Eng; 2006 Jun; 34(6):1042-50. PubMed ID: 16783659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction forces and tissue changes during explant of CWRU-type intramuscular electrodes from rat gastrocnemius.
    Bhadra N; Mortimer JT
    Ann Biomed Eng; 1997; 25(6):1017-25. PubMed ID: 9395047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode fracture rates and occurrences of infection and granuloma associated with percutaneous intramuscular electrodes in upper-limb functional electrical stimulation applications.
    Knutson JS; Naples GG; Peckham PH; Keith MW
    J Rehabil Res Dev; 2002; 39(6):671-83. PubMed ID: 17943669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and clinical application of a double helix electrode for functional electrical stimulation.
    Scheiner A; Polando G; Marsolais EB
    IEEE Trans Biomed Eng; 1994 May; 41(5):425-31. PubMed ID: 8070801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term biocompatibility of a miniature stimulator implanted in feline hind limb muscles.
    Cameron T; Liinamaa TL; Loeb GE; Richmond FJ
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1024-35. PubMed ID: 9691577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of closed double helix electrode for functional electrical stimulation.
    Kagaya H; Sharma M; Polando G; Marsolais EB
    Clin Orthop Relat Res; 1998 Jan; (346):215-22. PubMed ID: 9577430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles.
    Badia J; Boretius T; Andreu D; Azevedo-Coste C; Stieglitz T; Navarro X
    J Neural Eng; 2011 Jun; 8(3):036023. PubMed ID: 21558601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve.
    Branner A; Stein RB; Fernandez E; Aoyagi Y; Normann RA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):146-57. PubMed ID: 14723504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode characterization for functional application to upper extremity FNS.
    Kilgore KL; Peckham PH; Keith MW; Thrope GB
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):12-21. PubMed ID: 2154398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabricated cylindrical multielectrodes for neural stimulation.
    Snow S; Jacobsen SC; Wells DL; Horch KW
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):320-6. PubMed ID: 16485761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrays for chronic functional microstimulation of the lumbosacral spinal cord.
    McCreery D; Pikov V; Lossinsky A; Bullara L; Agnew W
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):195-207. PubMed ID: 15218934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tissue response to epimysial electrodes for diaphragm pacing in dogs.
    Schmit BD; Mortimer JT
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):921-30. PubMed ID: 9311161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive measurement of torque development in the rat foot: measurement setup and results from stimulation of the sciatic nerve with polyimide-based cuff electrodes.
    Stieglitz T; Schuettler M; Schneider A; Valderrama E; Navarro X
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):427-37. PubMed ID: 14960120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue response to chronically stimulated implanted epimysial and intramuscular electrodes.
    Akers JM; Peckham PH; Keith MW; Merritt K
    IEEE Trans Rehabil Eng; 1997 Jun; 5(2):207-20. PubMed ID: 9184906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term stimulation by active epiretinal implants in normal and RCD1 dogs.
    Güven D; Weiland JD; Fujii G; Mech BV; Mahadevappa M; Greenberg R; Roizenblatt R; Qiu G; Labree L; Wang X; Hinton D; Humayun MS
    J Neural Eng; 2005 Mar; 2(1):S65-73. PubMed ID: 15876657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.