These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16784168)

  • 61. Investigation of degree of saturation in landfill liners using electrical resistivity imaging.
    Kibria G; Hossain MS
    Waste Manag; 2015 May; 39():197-204. PubMed ID: 25758909
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of the geotechnical properties of MSW in two Brazilian landfills.
    Machado SL; Karimpour-Fard M; Shariatmadari N; Carvalho MF; do Nascimento JC
    Waste Manag; 2010 Dec; 30(12):2579-91. PubMed ID: 20826081
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interpretations of surface movements of a landfill built on steeply sloping ground. A cautionary case history.
    Blight GE
    Waste Manag Res; 2007 Dec; 25(6):572-84. PubMed ID: 18229752
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation.
    Guan C; Xie HJ; Wang YZ; Chen YM; Jiang YS; Tang XW
    Sci Total Environ; 2014 Jan; 466-467():221-31. PubMed ID: 23906856
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of leachate accumulation on landfill stability in humid regions of China.
    Jianguo J; Yong Y; Shihui Y; Bin Y; Chang Z
    Waste Manag; 2010 May; 30(5):848-55. PubMed ID: 20053545
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Steel slags in a landfill top cover--experiences from a full-scale experiment.
    Andreas L; Diener S; Lagerkvist A
    Waste Manag; 2014 Mar; 34(3):692-701. PubMed ID: 24393476
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover.
    Safari E; Jalili Ghazizade M; Abduli MA; Gatmiri B
    Waste Manag; 2014 Aug; 34(8):1408-15. PubMed ID: 24820661
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Laboratory and field testing for utilization of an excavated soil as landfill liner material.
    Bozbey I; Guler E
    Waste Manag; 2006; 26(11):1277-86. PubMed ID: 16376067
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sustainable sanitary landfills for neglected small cities in developing countries: the semi-mechanized trench method from Villanueva, Honduras.
    Oakley SM; Jimenez R
    Waste Manag; 2012 Dec; 32(12):2535-51. PubMed ID: 22929224
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analytical Modelling of MSW Landfill Surface Displacement Based on GNSS Monitoring.
    Adamcová D; Bartoň S; Osinski P; Pasternak G; Podlasek A; Vaverková MD; Koda E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105892
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Factors affecting the hydraulic performance of a geosynthetic clay liner overlap.
    Weerasinghe IA; Gallage C; Dawes L; Kendall P
    J Environ Manage; 2020 Oct; 271():110978. PubMed ID: 32778277
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation of Chemical Compatibility Testing of Geomembranes Using the Comprehensive Test System and EPA Method 9090.
    Barrett WM; Stessel RI; Fetterly FA
    J Air Waste Manag Assoc; 1999 Sep; 49(9):1027-1038. PubMed ID: 29073881
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Migration of inorganic ions from the leachate of the Rio das Ostras landfill: a comparison of three different configurations of protective barriers.
    Lacerda CV; Ritter E; Pires JA; de Castro JA
    Waste Manag; 2014 Nov; 34(11):2285-91. PubMed ID: 25042116
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.
    Yang N; Damgaard A; Lü F; Shao LM; Brogaard LK; He PJ
    Waste Manag; 2014 May; 34(5):929-37. PubMed ID: 24656422
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modeling the Salinity Effect on the Water Retention Curve of Geosynthetic Clay Liner (GCL) on the Drying Path.
    Zeng Z; Lu Y; Wan T; Lin S; Nong X; Sun J
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570174
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Real-time ultrasonic water level IoT sensor for in-situ soil permeability testing.
    Blanco-Gómez P; Mateu-Belloch A; Jiménez-García JL; Salas-Cantarellas AJ; Pieras-Company JJ; Santamaría-Casals E
    HardwareX; 2024 Sep; 19():e00541. PubMed ID: 38975029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effectiveness of composite lining systems in controlling the leakage of leachate from sanitary landfills to groundwater.
    Gan TY; Friesen G
    Environ Monit Assess; 1991 Oct; 19(1-3):193-202. PubMed ID: 24233939
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Time-Dependent Response of a Recycled C&D Material-Geotextile Interface under Direct Shear Mode.
    Ferreira FB; Pereira PM; Vieira CS; Lopes ML
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34199754
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Parametric sensitivity analysis of leachate transport simulations at landfills.
    Bou-Zeid E; El-Fadel M
    Waste Manag; 2004; 24(7):681-9. PubMed ID: 15288300
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality.
    Foose GJ
    Waste Manag; 2010; 30(8-9):1577-86. PubMed ID: 20304623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.