BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16784232)

  • 1. Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis.
    Macdonald IK; Badyal SK; Ghamsari L; Moody PC; Raven EL
    Biochemistry; 2006 Jun; 45(25):7808-17. PubMed ID: 16784232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the ascorbate peroxidase-salicylhydroxamic acid complex.
    Sharp KH; Moody PC; Brown KA; Raven EL
    Biochemistry; 2004 Jul; 43(27):8644-51. PubMed ID: 15236572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of two electron-transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography.
    Mandelman D; Jamal J; Poulos TL
    Biochemistry; 1998 Dec; 37(50):17610-7. PubMed ID: 9860877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the substrate specificity and reactivity of a heme protein: creation of an ascorbate binding site in cytochrome c peroxidase.
    Murphy EJ; Metcalfe CL; Basran J; Moody PC; Raven EL
    Biochemistry; 2008 Dec; 47(52):13933-41. PubMed ID: 19061385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering ascorbate peroxidase activity into cytochrome c peroxidase.
    Meharenna YT; Oertel P; Bhaskar B; Poulos TL
    Biochemistry; 2008 Sep; 47(39):10324-32. PubMed ID: 18771292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two substrate binding sites in ascorbate peroxidase: the role of arginine 172.
    Bursey EH; Poulos TL
    Biochemistry; 2000 Jun; 39(25):7374-9. PubMed ID: 10858284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton delivery to ferryl heme in a heme peroxidase: enzymatic use of the Grotthuss mechanism.
    Efimov I; Badyal SK; Metcalfe CL; Macdonald I; Gumiero A; Raven EL; Moody PC
    J Am Chem Soc; 2011 Oct; 133(39):15376-83. PubMed ID: 21819069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Ala134 in controlling substrate binding and reactivity in ascorbate peroxidase.
    Turner DD; Lad L; Kwon H; Basran J; Carr KH; Moody PCE; Raven EL
    J Inorg Biochem; 2018 Mar; 180():230-234. PubMed ID: 29317104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of tryptophan-208 residue in cytochrome c oxidation by ascorbate peroxidase from Leishmania major-kinetic studies on Trp208Phe mutant and wild type enzyme.
    Yadav RK; Dolai S; Pal S; Adak S
    Biochim Biophys Acta; 2008 May; 1784(5):863-71. PubMed ID: 18342641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the ascorbate peroxidase-ascorbate complex.
    Sharp KH; Mewies M; Moody PC; Raven EL
    Nat Struct Biol; 2003 Apr; 10(4):303-7. PubMed ID: 12640445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding and catalytic mechanism in ascorbate peroxidase: evidence for two ascorbate binding sites.
    Lad L; Mewies M; Raven EL
    Biochemistry; 2002 Nov; 41(46):13774-81. PubMed ID: 12427040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of electrostatics and salt bridges in stabilizing the compound I radical in ascorbate peroxidase.
    Barrows TP; Poulos TL
    Biochemistry; 2005 Nov; 44(43):14062-8. PubMed ID: 16245922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase.
    Morales M; Mate MJ; Romero A; Martínez MJ; Martínez ÁT; Ruiz-Dueñas FJ
    J Biol Chem; 2012 Nov; 287(49):41053-67. PubMed ID: 23071108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sorghum ascorbate peroxidase with four binding sites has activity against ascorbate and phenylpropanoids.
    Zhang B; Lewis JA; Vermerris W; Sattler SE; Kang C
    Plant Physiol; 2023 May; 192(1):102-118. PubMed ID: 36575825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways.
    Pérez-Boada M; Ruiz-Dueñas FJ; Pogni R; Basosi R; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    J Mol Biol; 2005 Nov; 354(2):385-402. PubMed ID: 16246366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the active site of ascorbate peroxidase.
    Lloyd Raven E; Celik A; Cullis PM; Sangar R; Sutcliffe MJ
    Biochem Soc Trans; 2001 May; 29(Pt 2):105-11. PubMed ID: 11356136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical, spectroscopic and structural investigation of the substrate-binding site in ascorbate peroxidase.
    Hill AP; Modi S; Sutcliffe MJ; Turner DD; Gilfoyle DJ; Smith AT; Tam BM; Lloyd E
    Eur J Biochem; 1997 Sep; 248(2):347-54. PubMed ID: 9346287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic ascorbate peroxidase isoenzyme II from tea: structural insights into the heme pocket of a unique hybrid peroxidase.
    Heering HA; Jansen MA; Thorneley RN; Smulevich G
    Biochemistry; 2001 Aug; 40(34):10360-70. PubMed ID: 11513615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron oxidation state modulates active site structure in a heme peroxidase.
    Badyal SK; Metcalfe CL; Basran J; Efimov I; Moody PC; Raven EL
    Biochemistry; 2008 Apr; 47(15):4403-9. PubMed ID: 18351739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography.
    Henriksen A; Schuller DJ; Meno K; Welinder KG; Smith AT; Gajhede M
    Biochemistry; 1998 Jun; 37(22):8054-60. PubMed ID: 9609699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.