These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16784232)

  • 41. Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study.
    Ruiz-Dueñas FJ; Morales M; Pérez-Boada M; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    Biochemistry; 2007 Jan; 46(1):66-77. PubMed ID: 17198376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of C-terminal acidic cluster in stabilization of heme spin state of ascorbate peroxidase from Leishmania major.
    Yadav RK; Dolai S; Pal S; Adak S
    Arch Biochem Biophys; 2010 Mar; 495(2):129-35. PubMed ID: 20060805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tuning the formation of a covalent haem-protein link by selection of reductive or oxidative conditions as exemplified by ascorbate peroxidase.
    Metcalfe CL; Daltrop O; Ferguson SJ; Raven EL
    Biochem J; 2007 Dec; 408(3):355-61. PubMed ID: 17714075
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.
    Poloznikov AA; Zakharova GS; Chubar TA; Hushpulian DM; Tishkov VI; Gazaryan IG
    Biochimie; 2015 Aug; 115():71-7. PubMed ID: 25957835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A molecular switch and electronic circuit modulate catalase activity in catalase-peroxidases.
    Carpena X; Wiseman B; Deemagarn T; Singh R; Switala J; Ivancich A; Fita I; Loewen PC
    EMBO Rep; 2005 Dec; 6(12):1156-62. PubMed ID: 16211084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An analysis of substrate binding interactions in the heme peroxidase enzymes: a structural perspective.
    Gumiero A; Murphy EJ; Metcalfe CL; Moody PC; Raven EL
    Arch Biochem Biophys; 2010 Aug; 500(1):13-20. PubMed ID: 20206594
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of tyrosine-103 in myoglobin peroxidase activity: kinetic and steady-state studies on the reaction of wild-type and variant recombinant human myoglobins with H(2)O(2).
    Witting PK; Mauk AG; Lay PA
    Biochemistry; 2002 Sep; 41(38):11495-503. PubMed ID: 12234193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ascorbate peroxidase-related (APx-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent.
    Lazzarotto F; Teixeira FK; Rosa SB; Dunand C; Fernandes CL; de Vasconcelos Fontenele A; Silveira JAG; Verli H; Margis R; Margis-Pinheiro M
    New Phytol; 2011 Jul; 191(1):234-250. PubMed ID: 21352234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic features of lignin peroxidase-catalyzed oxidation of substituted phenols and 1,2-dimethoxyarenes.
    Ward G; Hadar Y; Bilkis I; Dosoretz CG
    J Biol Chem; 2003 Oct; 278(41):39726-34. PubMed ID: 12857756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heme electron transfer in peroxidases: the propionate e-pathway.
    Guallar V
    J Phys Chem B; 2008 Oct; 112(42):13460-4. PubMed ID: 18816089
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability.
    Wada K; Tada T; Nakamura Y; Ishikawa T; Yabuta Y; Yoshimura K; Shigeoka S; Nishimura K
    J Biochem; 2003 Aug; 134(2):239-44. PubMed ID: 12966073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidences for structural basis of altered ascorbate peroxidase activity in cadmium-stressed rice plants exposed to jasmonate.
    Singh I; Shah K
    Biometals; 2014 Apr; 27(2):247-63. PubMed ID: 24442518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle.
    Choinowski T; Blodig W; Winterhalter KH; Piontek K
    J Mol Biol; 1999 Feb; 286(3):809-27. PubMed ID: 10024453
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism.
    Rodríguez-López JN; Gilabert MA; Tudela J; Thorneley RN; García-Cánovas F
    Biochemistry; 2000 Oct; 39(43):13201-9. PubMed ID: 11052672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structures of K42N and K42Y sperm whale myoglobins point to an inhibitory role of distal water in peroxidase activity.
    Wang C; Lovelace LL; Sun S; Dawson JH; Lebioda L
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2833-9. PubMed ID: 25372675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identifying the elusive sites of tyrosyl radicals in cytochrome c peroxidase: implications for oxidation of substrates bound at a site remote from the heme.
    Miner KD; Pfister TD; Hosseinzadeh P; Karaduman N; Donald LJ; Loewen PC; Lu Y; Ivancich A
    Biochemistry; 2014 Jun; 53(23):3781-9. PubMed ID: 24901481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New insights into the heme cavity structure of catalase-peroxidase: a spectroscopic approach to the recombinant synechocystis enzyme and selected distal cavity mutants.
    Heering HA; Indiani C; Regelsberger G; Jakopitsch C; Obinger C; Smulevich G
    Biochemistry; 2002 Jul; 41(29):9237-47. PubMed ID: 12119039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of the metal-binding sites of restriction endonucleases by Fe2+-mediated oxidative cleavage.
    Hlavaty JJ; Benner JS; Hornstra LJ; Schildkraut I
    Biochemistry; 2000 Mar; 39(11):3097-105. PubMed ID: 10715131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human indoleamine 2,3-dioxygenase is a catalyst of physiological heme peroxidase reactions: implications for the inhibition of dioxygenase activity by hydrogen peroxide.
    Freewan M; Rees MD; Plaza TS; Glaros E; Lim YJ; Wang XS; Yeung AW; Witting PK; Terentis AC; Thomas SR
    J Biol Chem; 2013 Jan; 288(3):1548-67. PubMed ID: 23209301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The presence of a hydrogen bond between asparagine 485 and the pi system of FAD modulates the redox potential in the reaction catalyzed by cholesterol oxidase.
    Yin Y; Sampson NS; Vrielink A; Lario PI
    Biochemistry; 2001 Nov; 40(46):13779-87. PubMed ID: 11705367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.