BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1678427)

  • 1. Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury.
    Dubinsky JM; Rothman SM
    J Neurosci; 1991 Aug; 11(8):2545-51. PubMed ID: 1678427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations.
    Michaels RL; Rothman SM
    J Neurosci; 1990 Jan; 10(1):283-92. PubMed ID: 1967639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium influx via L-type voltage-gated channels mediates the delayed, elevated increases in steady-state c-fos mRNA levels in cerebellar granule cells exposed to excitotoxic levels of glutamate.
    Griffiths R; Ritchie L; Lidwell K; Grieve A; Malcolm CS; Scott M; Meredith C
    J Neurosci Res; 1998 Jun; 52(6):641-52. PubMed ID: 9669313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons.
    Randall RD; Thayer SA
    J Neurosci; 1992 May; 12(5):1882-95. PubMed ID: 1349638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators.
    Hyrc K; Handran SD; Rothman SM; Goldberg MP
    J Neurosci; 1997 Sep; 17(17):6669-77. PubMed ID: 9254679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paradoxical potentiation by low extracellular Ca2+ of acute chemical anoxic neuronal injury in cerebellar granule cell culture.
    Verity MA; Torres M; Sarafian T
    Mol Chem Neuropathol; 1991 Dec; 15(3):217-33. PubMed ID: 1687239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons.
    Frandsen A; Schousboe A
    J Neurochem; 1991 Mar; 56(3):1075-8. PubMed ID: 1671584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia.
    Bickler PE; Gallego SM; Hansen BM
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):811-9. PubMed ID: 8103057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium cyanide increases cytosolic free calcium: evidence for activation of the reversed mode of the Na+/Ca2+ exchanger and Ca2+ mobilization from inositol trisphosphate-insensitive pools.
    Kiang JG; Smallridge RC
    Toxicol Appl Pharmacol; 1994 Aug; 127(2):173-81. PubMed ID: 7519371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons.
    Mattson MP; Lovell MA; Furukawa K; Markesbery WR
    J Neurochem; 1995 Oct; 65(4):1740-51. PubMed ID: 7561872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective effects of cyanide (100 microM) on the excitatory amino acid-induced elevation of intracellular calcium levels in neuronal culture.
    Cai Z; McCaslin PP
    Neurochem Res; 1992 Aug; 17(8):803-8. PubMed ID: 1353614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity.
    Sattler R; Charlton MP; Hafner M; Tymianski M
    J Neurochem; 1998 Dec; 71(6):2349-64. PubMed ID: 9832133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i.
    Furukawa K; Smith-Swintosky VL; Mattson MP
    Exp Neurol; 1995 Jun; 133(2):153-63. PubMed ID: 7649222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic inhibition potentiates AMPA-induced Ca2+ fluxes and neurotoxicity in rat cerebellar granule cells.
    Cebers G; Cebere A; Liljequist S
    Brain Res; 1998 Jan; 779(1-2):194-204. PubMed ID: 9473670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge.
    Khodorov B; Pinelis V; Vergun O; Storozhevykh T; Vinskaya N
    FEBS Lett; 1996 Nov; 397(2-3):230-4. PubMed ID: 8955353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons.
    Wang GJ; Thayer SA
    J Neurophysiol; 1996 Sep; 76(3):1611-21. PubMed ID: 8890280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arachidonic acid enhances intracellular [Ca2+]i increase and mitochondrial depolarization induced by glutamate in cerebellar granule cells.
    Surin AM; Bolshakov AP; Mikhailova MM; Sorokina EG; Senilova YE; Pinelis VG; Khodorov BI
    Biochemistry (Mosc); 2006 Aug; 71(8):864-70. PubMed ID: 16978149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brief calcium transients evoked by glutamate receptor agonists in rat dorsal horn neurons: fast kinetics and mechanisms.
    Reichling DB; MacDermott AB
    J Physiol; 1993 Sep; 469():67-88. PubMed ID: 7505825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes.
    Jensen AM; Chiu SY
    J Neurosci; 1990 Apr; 10(4):1165-75. PubMed ID: 1970355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of N-methyl-D-aspartate receptors prevents cyanide-induced neuronal injury in primary hippocampal cultures.
    Patel MN; Yim GK; Isom GE
    Toxicol Appl Pharmacol; 1992 Jul; 115(1):124-9. PubMed ID: 1352919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.