BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16785011)

  • 1. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 5. Temperature.
    Miller MW; Church CC; Labuda C; Mazza S; Raymond J
    Ultrasound Med Biol; 2006 Jun; 32(6):893-904. PubMed ID: 16785011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of transition temperature in adult and newborn human red blood cells.
    Imre S; Sári B; Török I; Dvorácsek E
    Acta Physiol Acad Sci Hung; 1982; 59(4):311-5. PubMed ID: 7170983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: medium tonicity.
    Miller MW; Battaglia LF; Mazza S
    Ultrasound Med Biol; 2003 May; 29(5):713-24. PubMed ID: 12754071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 3. Antioxidant (Trolox) inclusion.
    Miller MW; Miller WM; Battaglia LF
    Ultrasound Med Biol; 2003 Jan; 29(1):103-12. PubMed ID: 12604121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of membrane thermotropic properties on hypotonic hemolysis and hypertonic cryohemolysis of human red blood cells.
    Minetti M; Ceccarini M; Di Stasi AM
    J Cell Biochem; 1984; 25(2):61-72. PubMed ID: 6090481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the hemolytic potential of Optison and Albunex in whole human blood in vitro: acoustic pressure, ultrasound frequency, donor and passive cavitation detection considerations.
    Miller MW; Everbach EC; Cox C; Knapp RR; Brayman AA; Sherman TA
    Ultrasound Med Biol; 2001 May; 27(5):709-21. PubMed ID: 11397535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 2. Medium dissolved gas (pO2) content.
    Miller MW; Everbach EC; Miller WM; Battaglia LF
    Ultrasound Med Biol; 2003 Jan; 29(1):93-102. PubMed ID: 12604120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonolysis of Albunex-supplemented, 40% hematocrit human erythrocytes by pulsed 1-MHz ultrasound: pulse number, pulse duration and exposure vessel rotation dependence.
    Brayman AA; Miller MW
    Ultrasound Med Biol; 1999 Feb; 25(2):307-14. PubMed ID: 10320320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemolysis of 40% hematocrit, Albunex-supplemented human erythrocytes by pulsed ultrasound: frequency, acoustic pressure and pulse length dependence.
    Brayman AA; Strickler PL; Luan H; Barned SL; Raeman CH; Cox C; Miller MW
    Ultrasound Med Biol; 1997; 23(8):1237-50. PubMed ID: 9372572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Autohemolysis of human erythrocytes in the temperature range 4-37 C].
    Chernitskiĭ EA; Iamaĭkina IV
    Biofizika; 1996; 41(2):417-20. PubMed ID: 8723660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative sensitivity of human fetal and adult erythrocytes to hemolysis by pulsed 1 MHz ultrasound.
    Miller MW; Brayman AA; Sherman TA; Abramowicz JS; Cox C
    Ultrasound Med Biol; 2001 Mar; 27(3):419-25. PubMed ID: 11369128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Factors of avian erythrocyte fusion: changes in the state of plasma membrane induced by dimethylsulfoxide and temperature].
    Boiko NM; Bondarenko VA; Belous AM
    Biokhimiia; 1982 Jun; 47(6):896-903. PubMed ID: 7115803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of high-pressure-induced disruption of human erythrocytes by flow cytometry.
    Yamaguchi T; Terada S
    Cell Mol Biol Lett; 2003; 8(4):1013-6. PubMed ID: 14668924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of protective effect of amphiphilic compounds during hypertonic hemolysis of erythrocytes].
    Orlova NV; Shpakova NM
    Fiziol Zh (1994); 2006; 52(5):55-61. PubMed ID: 17176840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave and thermal interactions with oxidative hemolysis.
    Kiel JL; Erwin DN
    Physiol Chem Phys Med NMR; 1984; 16(4):317-23. PubMed ID: 6097927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis of albunex-supplemented, 40% hematocrit human erythrocytes in vitro by 1-MHz pulsed ultrasound: acoustic pressure and pulse length dependence.
    Brayman AA; Azadniv M; Cox C; Miller MW
    Ultrasound Med Biol; 1996; 22(7):927-38. PubMed ID: 8923711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-pressure-induced hemolysis in papain-digested human erythrocytes is suppressed by cross-linking of band 3 via anti-band 3 antibodies.
    Yamaguchi T; Satoh I; Ariyoshi N; Terada S
    J Biochem; 2005 Apr; 137(4):535-41. PubMed ID: 15858178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pulse length-dependence of inertial cavitation dose and hemolysis.
    Chen WS; Brayman AA; Matula TJ; Crum LA; Miller MW
    Ultrasound Med Biol; 2003 May; 29(5):739-48. PubMed ID: 12754073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemolysis in vivo from exposure to pulsed ultrasound.
    Dalecki D; Raeman CH; Child SZ; Cox C; Francis CW; Meltzer RS; Carstensen EL
    Ultrasound Med Biol; 1997; 23(2):307-13. PubMed ID: 9140187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.