These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16785023)

  • 21. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes.
    Galván-Hernández A; Kobayashi N; Hernández-Cobos J; Antillón A; Nakabayashi S; Ortega-Blake I
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183101. PubMed ID: 31672540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sterol domains in phospholipid membranes: dehydroergosterol polarization measures molecular sterol transfer.
    Butko P; Hapala I; Nemecz G; Schroeder F
    J Biochem Biophys Methods; 1992 Mar; 24(1-2):15-37. PubMed ID: 1560178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of sphingomyelins and phosphatidylcholines with fluorescent dehydroergosterol.
    Schroeder F; Nemecz G
    Biochemistry; 1989 Jul; 28(14):5992-6000. PubMed ID: 2775747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The magnitude of condensation induced by cholesterol on the mixtures of sphingomyelin with phosphatidylcholines-Study on ternary and quaternary systems.
    Wydro P
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):594-601. PubMed ID: 21074382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Availability for enzyme-catalyzed oxidation of cholesterol in mixed monolayers containing both phosphatidylcholine and sphingomyelin.
    Mattjus P; Slotte JP
    Chem Phys Lipids; 1994 May; 71(1):73-81. PubMed ID: 8039259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol and lipid/protein ratio control the oligomerization of a sphingomyelin-specific toxin, lysenin.
    Ishitsuka R; Kobayashi T
    Biochemistry; 2007 Feb; 46(6):1495-502. PubMed ID: 17243772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers.
    Massey JB
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):167-84. PubMed ID: 11342156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation.
    Ayuyan AG; Cohen FS
    Biophys J; 2006 Sep; 91(6):2172-83. PubMed ID: 16815906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles.
    Ohvo-Rekilä H; Akerlund B; Slotte JP
    Chem Phys Lipids; 2000 Apr; 105(2):167-78. PubMed ID: 10823464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sphingomyelin/phosphatidylcholine and cholesterol interactions studied by imaging mass spectrometry.
    Zheng L; McQuaw CM; Ewing AG; Winograd N
    J Am Chem Soc; 2007 Dec; 129(51):15730-1. PubMed ID: 18044889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetric distribution of phosphatidylcholine and sphingomyelin between micellar and vesicular phases. Potential implications for canalicular bile formation.
    Eckhardt ER; Moschetta A; Renooij W; Goerdayal SS; van Berge-Henegouwen GP; van Erpecum KJ
    J Lipid Res; 1999 Nov; 40(11):2022-33. PubMed ID: 10553006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid raft components cholesterol and sphingomyelin increase H+/OH- permeability of phosphatidylcholine membranes.
    Gensure RH; Zeidel ML; Hill WG
    Biochem J; 2006 Sep; 398(3):485-95. PubMed ID: 16706750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of hydrophobic mismatch and interdigitation on sterol/sphingomyelin interaction in ternary bilayer membranes.
    Jaikishan S; Slotte JP
    Biochim Biophys Acta; 2011 Jul; 1808(7):1940-5. PubMed ID: 21515240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N- and O-methylation of sphingomyelin markedly affects its membrane properties and interactions with cholesterol.
    Björkbom A; Róg T; Kankaanpää P; Lindroos D; Kaszuba K; Kurita M; Yamaguchi S; Yamamoto T; Jaikishan S; Paavolainen L; Päivärinne J; Nyholm TK; Katsumura S; Vattulainen I; Slotte JP
    Biochim Biophys Acta; 2011 Apr; 1808(4):1179-86. PubMed ID: 21262197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of liposomal cholesterol and its effect on phospholipid peroxidation.
    Schnitzer E; Pinchuk I; Bor A; Leikin-Frenkel A; Lichtenberg D
    Chem Phys Lipids; 2007 Mar; 146(1):43-53. PubMed ID: 17241622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sphingomyelins Prevent Propagation of Lipid Peroxidation-LC-MS/MS Evaluation of Inhibition Mechanisms.
    Coliva G; Lange M; Colombo S; Chervet JP; Domingues MR; Fedorova M
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins.
    Ramstedt B; Slotte JP
    Biophys J; 1999 Sep; 77(3):1498-506. PubMed ID: 10465760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of membrane composition on lipid oxidation in liposomes.
    Mosca M; Ceglie A; Ambrosone L
    Chem Phys Lipids; 2011 Feb; 164(2):158-65. PubMed ID: 21185813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane properties of D-erythro-N-acyl sphingomyelins and their corresponding dihydro species.
    Kuikka M; Ramstedt B; Ohvo-Rekilä H; Tuuf J; Slotte JP
    Biophys J; 2001 May; 80(5):2327-37. PubMed ID: 11325733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.