BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16785051)

  • 1. Effect of cooking and legume species upon calcium, iron and zinc uptake by Caco-2 cells.
    Viadel B; Barberá R; Farré R
    J Trace Elem Med Biol; 2006; 20(2):115-20. PubMed ID: 16785051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium, iron and zinc uptakes by Caco-2 cells from white beans and effect of cooking.
    Viadel B; Barberá R; Farré R
    Int J Food Sci Nutr; 2006; 57(3-4):190-7. PubMed ID: 17127469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of traditional, microwave and industrial cooking on inositol phosphate content in beans, chickpeas and lentils.
    Máñez G; Alegría A; Farré R; Frígola A
    Int J Food Sci Nutr; 2002 Nov; 53(6):503-8. PubMed ID: 12590745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccessibility of calcium, iron and zinc from three legume samples.
    Sahuquillo A; Barberá R; Farré R
    Nahrung; 2003 Dec; 47(6):438-41. PubMed ID: 14727775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model.
    Kruger J; Taylor JR; Du X; De Moura FF; Lönnerdal B; Oelofse A
    Food Chem; 2013 Nov; 141(2):1019-25. PubMed ID: 23790881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.).
    Hernández-Salazar M; Osorio-Diaz P; Loarca-Piña G; Reynoso-Camacho R; Tovar J; Bello-Pérez LA
    J Sci Food Agric; 2010 Jul; 90(9):1417-22. PubMed ID: 20549791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe and Zn in vitro bioavailability in relation to antinutritional factors in biofortified beans subjected to different processes.
    Brigide P; de Toledo NMV; López-Nicolás R; Ros G; Frontela Saseta C; de Carvalho RV
    Food Funct; 2019 Aug; 10(8):4802-4810. PubMed ID: 31317144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed coat removal improves iron bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model.
    DellaValle DM; Vandenberg A; Glahn RP
    J Agric Food Chem; 2013 Aug; 61(34):8084-9. PubMed ID: 23915260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: a comparison study.
    Etcheverry P; Wallingford JC; Miller DD; Glahn RP
    J Dairy Sci; 2004 Nov; 87(11):3629-37. PubMed ID: 15483146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of exogenous iron, calcium, protein and common salt on the bioaccessibility of zinc from cereals and legumes.
    Hemalatha S; Gautam S; Platel K; Srinivasan K
    J Trace Elem Med Biol; 2009; 23(2):75-83. PubMed ID: 19398054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relevance of thermophysical characterization in the microwave treatment of legumes.
    Dalmoro A; Naddeo C; Caputo S; Lamberti G; Guadagno L; d'Amore M; Barba AA
    Food Funct; 2018 Mar; 9(3):1816-1828. PubMed ID: 29513336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional quality of microwave-cooked and pressure-cooked legumes.
    Khatoon N; Prakash J
    Int J Food Sci Nutr; 2004 Sep; 55(6):441-8. PubMed ID: 15762308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of calcium salts, ascorbic acid and peptic pH on calcium, zinc and iron bioavailabilities from fortified human milk using an in vitro digestion/Caco-2 cell model.
    Etcheverry P; Wallingford JC; Miller DD; Glahn RP
    Int J Vitam Nutr Res; 2005 May; 75(3):171-8. PubMed ID: 16028632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary ligands as determinants of iron-zinc interactions at the absorptive enterocyte.
    Iyengar V; Pullakhandam R; Nair KM
    J Food Sci; 2010 Oct; 75(8):H260-4. PubMed ID: 21535504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion.
    Giusti F; Capuano E; Sagratini G; Pellegrini N
    Food Chem; 2019 Jul; 285():458-467. PubMed ID: 30797370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of processing conditions on phytic acid, calcium, iron, and zinc contents of lime-cooked maize.
    Bressani R; Turcios JC; Colmenares de Ruiz AS; de Palomo PP
    J Agric Food Chem; 2004 Mar; 52(5):1157-62. PubMed ID: 14995114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lentils (Lens culinaris Medikus Subspecies culinaris): a whole food for increased iron and zinc intake.
    Thavarajah D; Thavarajah P; Sarker A; Vandenberg A
    J Agric Food Chem; 2009 Jun; 57(12):5413-9. PubMed ID: 19459707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility of phenols in common beans ( Phaseolus vulgaris L.) and iron (Fe) availability to Caco-2 cells.
    Laparra JM; Glahn RP; Miller DD
    J Agric Food Chem; 2008 Nov; 56(22):10999-1005. PubMed ID: 18983154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets assessed in rat pups and Caco-2 cells.
    Hansen M; Sandström B; Lönnerdal B
    Pediatr Res; 1996 Oct; 40(4):547-52. PubMed ID: 8888281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/Caco-2 cell culture model.
    Cheng Z; Tako E; Yeung A; Welch RM; Glahn RP
    Food Funct; 2012 Jul; 3(7):732-6. PubMed ID: 22538397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.