These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16785102)

  • 1. Trojan horse or proton force: finding the right partner(s) for toxin translocation.
    Trujillo C; Ratts R; Tamayo A; Harrison R; Murphy JR
    Neurotox Res; 2006 Apr; 9(2-3):63-71. PubMed ID: 16785102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol.
    Ratts R; Trujillo C; Bharti A; vanderSpek J; Harrison R; Murphy JR
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15635-40. PubMed ID: 16230620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process.
    Murphy JR
    Toxins (Basel); 2011 Mar; 3(3):294-308. PubMed ID: 22069710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COPI coatomer complex proteins facilitate the translocation of anthrax lethal factor across vesicular membranes in vitro.
    Tamayo AG; Bharti A; Trujillo C; Harrison R; Murphy JR
    Proc Natl Acad Sci U S A; 2008 Apr; 105(13):5254-9. PubMed ID: 18356299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen.
    Blanke SR; Milne JC; Benson EL; Collier RJ
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8437-42. PubMed ID: 8710889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells.
    Orrell KE; Zhang Z; Sugiman-Marangos SN; Melnyk RA
    Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):461-473. PubMed ID: 28545305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ins and Outs of Anthrax Toxin.
    Friebe S; van der Goot FG; Bürgi J
    Toxins (Basel); 2016 Mar; 8(3):. PubMed ID: 26978402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide Probes Reveal a Hydrophobic Steric Ratchet in the Anthrax Toxin Protective Antigen Translocase.
    Colby JM; Krantz BA
    J Mol Biol; 2015 Nov; 427(22):3598-3606. PubMed ID: 26363343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of membrane translocation by anthrax protective antigen.
    Wesche J; Elliott JL; Falnes PO; Olsnes S; Collier RJ
    Biochemistry; 1998 Nov; 37(45):15737-46. PubMed ID: 9843379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus.
    Milne JC; Blanke SR; Hanna PC; Collier RJ
    Mol Microbiol; 1995 Feb; 15(4):661-6. PubMed ID: 7783638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient.
    Krantz BA; Finkelstein A; Collier RJ
    J Mol Biol; 2006 Feb; 355(5):968-79. PubMed ID: 16343527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential lysine residues within transmembrane helix 1 of diphtheria toxin facilitate COPI binding and catalytic domain entry.
    Trujillo C; Taylor-Parker J; Harrison R; Murphy JR
    Mol Microbiol; 2010 May; 76(4):1010-9. PubMed ID: 20398220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments.
    Pirazzini M; Azarnia Tehran D; Leka O; Zanetti G; Rossetto O; Montecucco C
    Biochim Biophys Acta; 2016 Mar; 1858(3):467-74. PubMed ID: 26307528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B.
    Genisyuerek S; Papatheodorou P; Guttenberg G; Schubert R; Benz R; Aktories K
    Mol Microbiol; 2011 Mar; 79(6):1643-54. PubMed ID: 21231971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex.
    Ratts R; Zeng H; Berg EA; Blue C; McComb ME; Costello CE; vanderSpek JC; Murphy JR
    J Cell Biol; 2003 Mar; 160(7):1139-50. PubMed ID: 12668662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host Cell Chaperones Hsp70/Hsp90 and Peptidyl-Prolyl Cis/Trans Isomerases Are Required for the Membrane Translocation of Bacterial ADP-Ribosylating Toxins.
    Ernst K; Schnell L; Barth H
    Curr Top Microbiol Immunol; 2017; 406():163-198. PubMed ID: 27197646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain.
    Pirazzini M; Henke T; Rossetto O; Mahrhold S; Krez N; Rummel A; Montecucco C; Binz T
    FEBS Lett; 2013 Nov; 587(23):3831-6. PubMed ID: 24157364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extension of juxtamembrane domain of diphtheria toxin receptor arrests translocation of diphtheria toxin fragment A into cytosol.
    Takahashi T; Umata T; Mekada E
    Biochem Biophys Res Commun; 2001 Mar; 281(3):690-6. PubMed ID: 11237713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines.
    Chellapandi P; Prisilla A
    Curr Protein Pept Sci; 2017; 18(5):412-424. PubMed ID: 27915984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.