BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 16785180)

  • 1. Effect of coal mine soil contamination on the elemental uptake and distribution in two edible Amaranthus species, A. dubius and A. hybridus.
    Jonnalagadda SB; Kindness A; Chunilall V
    J Environ Sci Health B; 2006; 41(5):747-64. PubMed ID: 16785180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel.
    Chunilall V; Kindness A; Jonnalagadda SB
    J Environ Sci Health B; 2005; 40(2):375-84. PubMed ID: 15825688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of coal mine dump contaminated soils on elemental uptake by Spinacia oleracea (spinach).
    Chunilall V; Kindness A; Jonnalagadda SB
    J Environ Sci Health B; 2006; 41(3):297-307. PubMed ID: 16484089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elemental uptake by edible herbs and lettuce (Latuca sativa).
    Pillay V; Jonnalagadda SB
    J Environ Sci Health B; 2007 May; 42(4):423-8. PubMed ID: 17474022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macro, minor and toxic elemental uptake and distribution in Hypoxis hemerocallidea, "the African Potato"--an edible medicinal plant.
    Jonnalagadda SB; Kindness A; Kubayi S; Cele MN
    J Environ Sci Health B; 2008; 43(3):271-80. PubMed ID: 18368548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract.
    Intawongse M; Dean JR
    Food Addit Contam; 2006 Jan; 23(1):36-48. PubMed ID: 16393813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of soil quality on elemental uptake by, and distribution in, Colocasia esculenta (Amadumbe), an edible root.
    Reddy M; Moodley R; Kindness A; Jonnalagadda SB
    J Environ Sci Health B; 2011; 46(3):247-56. PubMed ID: 21462052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites.
    Mellem JJ; Baijnath H; Odhav B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):568-75. PubMed ID: 19337919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps).
    Pavoni E; Petranich E; Adami G; Baracchini E; Crosera M; Emili A; Lenaz D; Higueras P; Covelli S
    J Environ Manage; 2017 Jan; 186(Pt 2):214-224. PubMed ID: 27484741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation.
    Alvarez E; Fernández Marcos ML; Vaamonde C; Fernández-Sanjurjo MJ
    Sci Total Environ; 2003 Sep; 313(1-3):185-97. PubMed ID: 12922070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost.
    Wong JW; Selvam A
    Arch Environ Contam Toxicol; 2009 Oct; 57(3):515-23. PubMed ID: 19294455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico.
    Figueroa JA; Wrobel K; Afton S; Caruso JA; Corona Felix Gutierrez J; Wrobel K
    Chemosphere; 2008 Feb; 70(11):2084-91. PubMed ID: 17931685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of metals by food plants grown on soils 10 years after biosolids application.
    Bai Y; Chen W; Chang AC; Page AL
    J Environ Sci Health B; 2010 Aug; 45(6):531-9. PubMed ID: 20603745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants.
    Kafel A; Nadgórska-Socha A; Gospodarek J; Babczyńska A; Skowronek M; Kandziora M; Rozpedek K
    Sci Total Environ; 2010 Feb; 408(5):1111-9. PubMed ID: 19945149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.