These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16785325)

  • 1. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution.
    Min G; Wang H; Sun TT; Kong XP
    J Cell Biol; 2006 Jun; 173(6):975-83. PubMed ID: 16785325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle.
    Min G; Zhou G; Schapira M; Sun TT; Kong XP
    J Cell Sci; 2003 Oct; 116(Pt 20):4087-94. PubMed ID: 12972502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking.
    Hu CC; Liang FX; Zhou G; Tu L; Tang CH; Zhou J; Kreibich G; Sun TT
    Mol Biol Cell; 2005 Sep; 16(9):3937-50. PubMed ID: 15958488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of asymmetric unit membrane during urothelial differentiation.
    Sun TT; Zhao H; Provet J; Aebi U; Wu XR
    Mol Biol Rep; 1996; 23(1):3-11. PubMed ID: 8983014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly.
    Deng FM; Liang FX; Tu L; Resing KA; Hu P; Supino M; Hu CC; Zhou G; Ding M; Kreibich G; Sun TT
    J Cell Biol; 2002 Nov; 159(4):685-94. PubMed ID: 12446744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed "twisted ribbon" structure.
    Walz T; Häner M; Wu XR; Henn C; Engel A; Sun TT; Aebi U
    J Mol Biol; 1995 May; 248(5):887-900. PubMed ID: 7760330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function.
    Garcia-España A; Chung PJ; Zhao X; Lee A; Pellicer A; Yu J; Sun TT; Desalle R
    Mol Phylogenet Evol; 2006 Nov; 41(2):355-67. PubMed ID: 16814572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uroplakins as markers of urothelial differentiation.
    Sun TT; Liang FX; Wu XR
    Adv Exp Med Biol; 1999; 462():7-18; discussion 103-14. PubMed ID: 10599409
    [No Abstract]   [Full Text] [Related]  

  • 9. Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins.
    Yu J; Lin JH; Wu XR; Sun TT
    J Cell Biol; 1994 Apr; 125(1):171-82. PubMed ID: 8138569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the major membrane protein complex from urinary bladder epithelial cells by cryo-electron crystallography.
    Oostergetel GT; Keegstra W; Brisson A
    J Mol Biol; 2001 Nov; 314(2):245-52. PubMed ID: 11718558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle.
    Min G; Stolz M; Zhou G; Liang F; Sebbel P; Stoffler D; Glockshuber R; Sun TT; Aebi U; Kong XP
    J Mol Biol; 2002 Apr; 317(5):697-706. PubMed ID: 11955018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrity of all four transmembrane domains of the tetraspanin uroplakin Ib is required for its exit from the ER.
    Tu L; Kong XP; Sun TT; Kreibich G
    J Cell Sci; 2006 Dec; 119(Pt 24):5077-86. PubMed ID: 17158912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional domains in tetraspanin proteins.
    Stipp CS; Kolesnikova TV; Hemler ME
    Trends Biochem Sci; 2003 Feb; 28(2):106-12. PubMed ID: 12575999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tetraspanin-Associated Uroplakins Family (UPK2/3) Is Evolutionarily Related to PTPRQ, a Phosphotyrosine Phosphatase Receptor.
    Chicote JU; DeSalle R; Segarra J; Sun TT; García-España A
    PLoS One; 2017; 12(1):e0170196. PubMed ID: 28099513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetraspanin proteins as organisers of membrane microdomains and signalling complexes.
    Yunta M; Lazo PA
    Cell Signal; 2003 Jun; 15(6):559-64. PubMed ID: 12681443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into tetraspanin CD9 function.
    Umeda R; Satouh Y; Takemoto M; Nakada-Nakura Y; Liu K; Yokoyama T; Shirouzu M; Iwata S; Nomura N; Sato K; Ikawa M; Nishizawa T; Nureki O
    Nat Commun; 2020 Mar; 11(1):1606. PubMed ID: 32231207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular interactions shaping the tetraspanin web.
    van Deventer SJ; Dunlock VE; van Spriel AB
    Biochem Soc Trans; 2017 Jun; 45(3):741-750. PubMed ID: 28620035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily.
    Seigneuret M
    Biophys J; 2006 Jan; 90(1):212-27. PubMed ID: 16352525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral organization of membrane proteins: tetraspanins spin their web.
    Charrin S; le Naour F; Silvie O; Milhiet PE; Boucheix C; Rubinstein E
    Biochem J; 2009 May; 420(2):133-54. PubMed ID: 19426143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automatic method for predicting transmembrane protein structures using cryo-EM and evolutionary data.
    Fleishman SJ; Harrington S; Friesner RA; Honig B; Ben-Tal N
    Biophys J; 2004 Nov; 87(5):3448-59. PubMed ID: 15339802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.