These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1678534)

  • 21. Transition-state stabilization as a measure of the efficiency of antibody catalysis.
    Stewart JD; Benkovic SJ
    Nature; 1995 Jun; 375(6530):388-91. PubMed ID: 7760931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interplay between chemistry and biology in the design of enzymatic catalysts.
    Schultz PG
    Science; 1988 Apr; 240(4851):426-33. PubMed ID: 2833815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site.
    Seebeck FP; Hilvert D
    J Am Chem Soc; 2005 Feb; 127(4):1307-12. PubMed ID: 15669871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antibody catalysis of carbon-carbon bond formation.
    Hilvert D
    Ciba Found Symp; 1991; 159():174-83; discussion 183-7. PubMed ID: 1959446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational evidence for the catalytic mechanism of glutaminyl cyclase. A DFT investigation.
    Calvaresi M; Garavelli M; Bottoni A
    Proteins; 2008 Nov; 73(3):527-38. PubMed ID: 18470930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression improvement and mechanistic study of the retro-Diels-Alderase catalytic antibody 10F11 by site-directed mutagenesis.
    Zheng L; Goddard JP; Baumann U; Reymond JL
    J Mol Biol; 2004 Aug; 341(3):807-14. PubMed ID: 15288788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding and catalysis: a thermodynamic study on a catalytic antibody system.
    Wade H; Scanlan TS
    Chembiochem; 2003 Jun; 4(6):537-40. PubMed ID: 12794866
    [No Abstract]   [Full Text] [Related]  

  • 31. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic residues and an electrostatic sandwich that promote enolpyruvyl shikimate 3-phosphate synthase (AroA) catalysis.
    Berti PJ; Chindemi P
    Biochemistry; 2009 May; 48(17):3699-707. PubMed ID: 19271774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical nature of intermolecular interactions within cAMP-dependent protein kinase active site: differential transition state stabilization in phosphoryl transfer reaction.
    Szarek P; Dyguda-Kazimierowicz E; Tachibana A; Sokalski WA
    J Phys Chem B; 2008 Sep; 112(37):11819-26. PubMed ID: 18720966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic antibodies: structure and function.
    Wentworth P; Janda KD
    Cell Biochem Biophys; 2001; 35(1):63-87. PubMed ID: 11898856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme.
    Bevilacqua PC
    Biochemistry; 2003 Mar; 42(8):2259-65. PubMed ID: 12600192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of signaling and related enzymes.
    Mildvan AS
    Proteins; 1997 Dec; 29(4):401-16. PubMed ID: 9408938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic and titration methods for determination of active site contents of enzyme and catalytic antibody preparations.
    Brocklehurst K; Resmini M; Topham CM
    Methods; 2001 Jun; 24(2):153-67. PubMed ID: 11384190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide.
    Razkin J; Nilsson H; Baltzer L
    J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization.
    Strajbl M; Shurki A; Kato M; Warshel A
    J Am Chem Soc; 2003 Aug; 125(34):10228-37. PubMed ID: 12926945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.